36 resultados para Escala equivalente
Resumo:
The objective of this study was to determine the seasonal and interannual variability and calculate the trends of wind speed in NEB and then validate the mesoscale numerical model for after engage with the microscale numerical model in order to get the wind resource at some locations in the NEB. For this we use two data sets of wind speed (weather stations and anemometric towers) and two dynamic models; one of mesoscale and another of microscale. We use statistical tools to evaluate and validate the data obtained. The simulations of the dynamic mesoscale model were made using data assimilation methods (Newtonian Relaxation and Kalman filter). The main results show: (i) Five homogeneous groups of wind speed in the NEB with higher values in winter and spring and with lower in summer and fall; (ii) The interannual variability of the wind speed in some groups stood out with higher values; (iii) The large-scale circulation modified by the El Niño and La Niña intensified wind speed for the groups with higher values; (iv) The trend analysis showed more significant negative values for G3, G4 and G5 in all seasons and in the annual average; (v) The performance of dynamic mesoscale model showed smaller errors in the locations Paracuru and São João and major errors were observed in Triunfo; (vi) Application of the Kalman filter significantly reduce the systematic errors shown in the simulations of the dynamic mesoscale model; (vii) The wind resource indicate that Paracuru and Triunfo are favorable areas for the generation of energy, and the coupling technique after validation showed better results for Paracuru. We conclude that the objective was achieved, making it possible to identify trends in homogeneous groups of wind behavior, and to evaluate the quality of both simulations with the dynamic model of mesoscale and microscale to answer questions as necessary before planning research projects in Wind-Energy area in the NEB
Resumo:
Introduction: Gait after stroke is characterized by a significant asymmetry between the lower limbs, with predominant use of the non-paretic lower limb (NPLL) over using the paretic lower limb. Accordingly, it has been suggested that adding load/weight to the NPLL as a form of restricting the movement of this limb may favor the use of the paretic limb, reducing interlimb asymmetry. However, few studies have been conducted up to this moment, which only investigated the immediate effects of this practice. Objectives: 1) Investigating whether there is an influence of adding load to the NPLL during treadmill training on cardiovascular parameters and on gait performance of individuals with stroke, compared to treadmill training without load addition; 2) Analyzing the effects of treadmill training with and without load added to the NPLL on kinematic parameters of each lower limb during gait; 3) Analyzing the effects of treadmill training with and without load added to the NPLL on measurements of functional mobility and postural balance of these patients. Materials and Methods: This is a randomized single blinded clinical trial involving 38 subjects, with a mean age of 56.5 years, at the subacute post-stroke phase (with mean time since stroke of 4.5 months). Participants were randomly assigned into an experimental group (EG) or control group (CG). EG (n= 19) was submitted to gait training on a treadmill with the addition of load to the NPLL by ankle weights equivalent to 5% of body weight. CG (n= 19) was only submitted to gait training on a treadmill. Behavioral strategies which included home exercises were also applied to both groups. The interventions occurred daily for two consecutive weeks (Day 1 to Day 9), being of 30 minutes duration each. Outcome measures: postural balance (Berg Functional Balance Scale – BBS), functional mobility (Timed Up and Go – TUG; kinematic variables of 180° turning) and kinematic gait variables were assessed at baseline (Day 0), after four training sessions (Day 4), after nine training sessions (Day 9), and 40 days after completion of training (Follow-up). Cardiovascular parameters (mean arterial pressure and heart rate) were evaluated at four moments within each training session. Analysis of variance (ANOVA) was used to compare outcomes between EG and CG in the course of the study (Day 0, Day 4, Day 9 and Follow-up). Unpaired t-tests allowed for intergroup comparison at each training session. 5% significance was used for all tests. Results: 1) Cardiovascular parameters (systemic arterial pressure, heart rate and derivated variables) did not change after the interventions and there were no differences between groups within each training session. There was an improvement in gait performance, with increased speed and distance covered, with no statistically significant difference between groups. 2) After the interventions, patients had increased paretic and non-paretic step lengths, in addition to exhibiting greater hip and knee joint excursion on both lower limbs. The gains were observed in the EG and CG, with no statistical difference between the groups and (mostly) maintained at follow-up. 3) After the interventions, patients showed better postural balance (higher scores on BBS) and functional mobility (reduced time spent on the TUG test and better performance on the 180° turning). All gains were observed in the EG and CG, with no statistically significant difference between groups and were maintained at follow-up. Conclusions: The addition of load to the NPLL did not affect cardiovascular parameters in patients with subacute stroke, similar to treadmill training without load, thus seemingly a safe training to be applied to these patients. However, the use of the load did not bring any additional benefits to gait training. The gait training program (nine training sessions on a treadmill + strategies and exercises for paretic limb stimulation) was useful for improving gait performance and kinematics, functional mobility and postural balance, and its use is suggested to promote the optimization of these outcomes in the subacute phase after stroke.
Resumo:
VARELA, M. L. et al. Influência da adição de resíduo de caulim nas propriedades tecnológicas de uma massa padrão de porcelanato produzido em escala industrial. Cerâmica, v.55, n.334 p.209-215. 2009.ISSN 0366-6913.Disponível em:
Resumo:
Sugar esters are substances which possess surfactant, antifungical and bactericidal actions and can be obtained through two renewable sources of raw materials: sugars and vegetable oils. Their excellent biodegradability, allied to lhe fact that they are non toxic, insipid, inodorous, biocompatible, no-ionic, digestible and because they can resist to adverse conditions of temperature, pH and salinity, explain lhe crescent use of these substances in several sections of lhe industry. The objective of this thesis was to synthesize and characterize surfactants and polymers containing sugar branched in their structures, through enzymatic transesterification of vinyl esters and sugars, using alkaline protease from Bacillus subtilis as catalyst, in organic medium (DMF).Three types of sugars were used: L-arabinose, D-glucose and sucrose and two types of vinyl esters: vinyl laurate and vinyl adipate. Aiming to reach high conversions from substrates to products for a possible future large scale industrial production, a serie of variables was optimized, through Design of Experiments (DOE), using Response Surface Methodology (RSM).The investigated variables were: (1) enzyme concentration; (2) molar reason of substrates; (3) water/solvent rale; (4) temperature and (5) time. We obtained six distinct sugar esters: 5-0-lauroyl L-arabinose, 6-0-lauroyl D-glucose, 1'-O-lauroyl sucrose, 5-0-vinyladipoyl L-arabinose, 6-0-vinyladipoyl D-glucose and 1 '-O-vinyladipoyl sucrose, being lhe last three polymerizable. The progress of lhe reaction was monitored by HPLC analysis, through lhe decrease of sugar concentration in comparison to lhe blank. Qualitative analysis by TLC confirmed lhe formation of lhe products. In lhe purification step, two methodologies were adopted: (1) chromatographic column and (2) extraction with hot acetone. The acylation position and lhe chemical structure were determined by 13C-RMN. The polymerization of lhe three vinyl sugar esters was possible, through chemical catalysis, using H2O2 and K2S2O8 as initiators, at 60°C, for 24 hours. IR spectra of lhe monomers and respective polymers were compared revealing lhe disappearance of lhe vinyl group in lhe polymer spectra. The molar weights of lhe polymers were determined by GPC and presented lhe following results: poly (5-0-vinyladipoyl L-arabinose): Mw = 7.2 X 104; PD = 2.48; poly (6-0-vinyladipoyl D-glucose): Mw = 2.7 X 103; PD = 1.75 and poly (1'-O-vinyladipoyl sucrose): Mw = 4.2 X 104; PD = 6.57. The six sugar esters were submitted to superficial tension tests for determination of the critical micelle concentrations (CMC), which varied from 122 to 167 ppm. Finally, a study of applicability of these sugar esters, as lubricants for completion fluids of petroleum wells was' accomplished through comparative analysis of lhe efficiency of these sugar esters, in relation to three commercial lubricants. The products synthesized in this thesis presented equivalent or superior action to lhe tested commercial products
Resumo:
The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.
Resumo:
A self-flotator vibrational prototype electromechanical drive for treatment of oil and water emulsion or like emulsion is presented and evaluated. Oil production and refining to obtain derivatives is carried out under arrangements technically referred to as on-shore and off-shore, ie, on the continent and in the sea. In Brazil 80 % of the petroleum production is taken at sea and area of deployment and it cost scale are worrisome. It is associated, oily water production on a large scale, carrier 95% of the potential pollutant of activity whose final destination is the environment medium, terrestrial or maritime. Although diversified set of techniques and water treatment systems are in use or research, we propose an innovative system that operates in a sustainable way without chemical additives, for the good of the ecosystem. Labyrinth adsor-bent is used in metal spirals, and laboratory scale flow. Equipment and process patents are claimed. Treatments were performed at different flow rates and bands often monitored with control systems, some built, other bought for this purpose. Measurements of the levels of oil and grease (OGC) of efluents treaty remained within the range of legal framework under test conditions. Adsorbents were weighed before and after treatment for obtaining oil impregna-tion, the performance goal of vibratory action and treatment as a whole. Treatment technolo-gies in course are referenced, to compare performance, qualitatively and quantitatively. The vibration energy consumption is faced with and without conventional flotation and self-flotation. There are good prospects for the proposed, especially in reducing the residence time, by capillary action system. The impregnation dimensionless parameter was created and confronted with consecrated dimensionless parameters, on the vibrational version, such as Weber number and Froude number in quadratic form, referred to as vibrational criticality. Re-sults suggest limits to the vibration intensity