40 resultados para Environmental Impact Study (EIS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Garanhuns City, in Pernambuco, undergoes a rapid, polluting and non-organized urban development affecting its freshwater springs around the urban environment. These sources are of great importance to the district as well as to the hydrographic basin of the Mundaú River. In this view, this paper aims at analyzing the socio-environmental problems resulting from the urban expansion surrounding the Garanhuns’ sources. The study considers the social and environmental dynamics and follows the theoretical contributions of socio-environmental geography proposed by Mendonça’s Urban Environmental System methodological and theoretical model (2004), as well as the conceptual values of Santos’ space theory (2002a). The data treatment included bibliographical and documental research, evaluation of environmental impact, and water analysis. It revealed that Garanhuns possesses many local environmental traits favoring the coming out of freshwater springs and that these sources have played an important role in the making and development of that village. The environmental impacts on freshwater springs, like Olho D’água, Bom Pastor, Vila Maria, Pau Amarelo and Pau Pombo have been evaluated through the environmental impact score IIAN. It put alight serious cases of socio-environmental impacts on the dynamics of the freshwater springs. In the period of April 2013 and April 2014, it monitored the superficial water quality expelled by the Pau Pombo, Pau Amarelo e Vila Maria water sources, and the analyses of the contents followed the determinations of the Environmental National Board, whose parameters are dissolved oxygen, biochemical demand of oxygen, nitrate, total coliforms, faecal coliforms, and electrical conductivity. The results recollected suggest the existence of organic pollution and deep alteration in the water coming out from the sources. In consequence, it seems important the putting out of measures destined to stop those impacts and guaranteeing protection and maintenance of the freshwater springs and their micro-basins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aims to evaluate the potential use of bagasse ash from sugar cane (CBC) as a flux, replacing phyllite and/or feldspar in standard industrial mass production of enameled porcelain, verifying the possibility of the CBC contribute to the overall reduction of the coefficient of thermal expansion of the ceramic mass. To this end, as a result of the research, we characterized the raw material components of the standard mass (clay, phyllite, kaolin, feldspar, quartz and talc) and the residue of BCC, by testing by XRF, XRD, AG, DTA and ATG. Specimens (CDP) were manufactured in the dimensions of 100 mm x 50 mm x 8 mm in uniaxial matrix under compaction pressure of 33 MPa, assembled in batches of 3 units subsequently sintered at temperatures of 1150°C to 1210°C by varying the Rating Scale at 10°C, heating and cooling ramp of 50°C/min and 25°C/min, with levels of 1 min, 3 min, 5 min, 8 min, 10 min, 15 min, 30 min and 60 min. analyzing the results of the physical properties of water absorption (WA), linear firing shrinkage (LFS), dilatometric analysis (DTA), flexural strain (SFT) and SEM of the sintered bodies in order to verify the adequacy of CDP to ISO 13006, ISO 10545, NBR 13816 standards; NBR 13817 and NBR 13818. The study showed that the formulations that best suit the requirements of the standards are:. G4 - which was applied in 10% of replacing the CBC phyllite, sintering temperature 1210 ° C for 10 min and porch, and F3 - with application of 7.5% of CBC to replace the feldspar in the sintering temperatures of 1190°C, 1200°C and 1210°C for 10 min and porch. These formulations showed better performance regarding the formation of primary and secondary mullite, with considerable reduction of cracks and pores, meeting the prerequisites of standards for glazed porcelain. The results shows that the use of the CBC as a flux in the preparation of porcelain mass meets standard parameters for the manufacture of the product, and thereby can reduce environmental impact and the cost of production. Therefore, it is recommended to use this residue in the ceramics industry, due to its industrial, commercial and collaborative viability for sustainability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The oil industry is one of the activities that generates more waste to the environment. The drill cuttings is a waste generated in large quantities in the drilling process and that may cause environmental damage such as soil contamination and consequently the contamination of groundwater if disposed of without prior treatment. Arises the need to develop scientific activities and research ways to adapt these wastes the current environmental standards. In the case of solid wastes, the NBR 10004: 2004 of the Brazilian Association of Technical Standards (ABNT) classifies them into class I waste (hazardous) and class II (not dangerous), which determines which wastes may or may not be discarded in the environment without causing environmental impact. This study presents a novel alternative for treating drill cuttings, where this waste was classified as class I (Abreu & Souza, 2005), mainly by removing the n-paraffin present in it, since this arises when using drilling fluids base oil. Using microemulsion systems promotes the removal of this contaminant drill cuttings samples from wells located in Alto do Rodrigues - RN. Initially, we determined the concentration of paraffin using infrared method in samples were extracted with ultrasound, we obtained a paraffin concentration in the range from 36.59 to 43.52 g of paraffin per kilogram of cuttings. Used two microemulsion systems containing two nonionic surfactants from different classes, one is an alcohol ethoxylated (UNTL-90) and the other an nonylphenol ethoxylated (RNX 110). The results indicated that the system UNTL-90 surfactant has better efficiency than the system with RNX 110. The study of the influence of contact time at the extraction showed that for times greater than 25 minutes has a tendency to increase the percentage extraction with increasing contact time. It was also observed that the extraction is fast because at 1 minute contact has 22.7% extraction. The reuse of the microemulsion system without removing the paraffin extracted in previous steps, showed reduction of 29.32 in percentage of extraction by comparing the first and third extraction, but by comparing the first and second extractions reduction is 8.5 in percentage extraction, so the systems reuse optimization can be an option for economically viable removing paraffin from cuttings. The extraction with shaking is more effective in the treatment of cuttings, reaching the extraction percentage of 87.04%, that is, obtaining a drill cuttings with 0.551% paraffin. Using the percentage of paraffin employed in non-aqueous drilling fluids and fluid maximum limit on cuttings for disposal established by the Environmental Protection Agency of the United States (US EPA), one arrives at the conclusion that the level of paraffin on gravel cannot exceed 3.93%. Conclude that the amount of paraffin in the treated cuttings with the microemulsion system with shaking is below the established by US EPA, showing that the system used was efficient in removing the paraffin from the drill cuttings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reservoirs are artificial ecosystems intermediate between rivers and lakes widely used in the Brazilian semiarid region as a way to provide water supply due to the said region’s water scarcity. The use of water from these supply sources for multiple uses, along with occupation and utilization of its riparian zone without proper management, directly influences the increased nutrient flow into aquatic environments, there with contributing to the acceleration of eutrophication. The semi-arid region is characterized by peculiar weather conditions, such as severe evaporation, high temperatures with little variation throughout the year and long water residence time, making it susceptible to prolonged drought occurrence, which tends to concentrate the nutrients in reservoirs, which favors the development of eutrophic conditions. Moreover, it is common soil use and occupation by carrying out activities with potential environmental impact on natural resources such as agriculture, livestock farming and lack of sanitation. The aim of this study is both to evaluate the water quality of the Cruzeta Reservoir, located in the semiarid region of Rio Grande do Norte, during a prolonged drought period, and assess the quality of its riparian zone soil under different uses, by monitoring physical-chemical variables. Along the prolonged drought, high levels of turbidity, suspended solids, nutrients and chlorophyll a were verified as present, therefore featuring low water quality. In the riparian zone of Cruzeta Reservoir, the areas under use of agriculture and livestock farming appeared as one of the main diffuse sources of nutrients to the said reservoir, featuring the highest levels of phosphorus and nitrogen in the soil, originated from decomposition of animal excreta and from the use of fertilizers, creating a tendency to increased eutrophication of such water supply source. The indicators of water and soil quality are useful for monitoring and evaluating the conservation status of natural resources, allowing the control and mitigation of the reservoir eutrophication process. This study confirmed the hypothesis that the reduction of water level, resulting from prolonged drought event, aggravates the symptoms of eutrophication; and also that using the soil under severalways modifies the physic chemical properties of the soil, having livestock farming and agriculture as the usages with greatest potential towards yielding P and N to the aquatic environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the emergence of new technologies, has grown the need to use new materials, and this has intensified research on the collection and use of materials from renewable sources, is to reduce production costs and / or environmental impact. In this context, it was found that the sheath coconut straw, can be utilized as raw material for the production of a eco-composite that can be used as a thermal and acoustic insulator. After selected from the coconut sheaths were subjected to treatment with aqueous 2 % sodium hydroxide (NaOH). The composite study was produced with the sheath and coconut natural latex, with coconut sheath percentage in the proportions 15%, 25% and 35% of the total compound volume. Physical, thermal and acoustic properties of the composites were analyzed in order to obtain data on the use of viability as thermoacoustic insulation. The CP15 composites, CP25 and CP35 showed thermal conductivity 0.188 W/m.K, 0.155 W/m.K and 0.150 W/m.K, respectively. It can be applied as thermal insulation in hot systems to 200 ° C. The CP35 composite was more efficient as a thermal and acoustic insulation, providing 20% noise reduction, 31% and 34% for frequencies of 1 kHz, 2 kHz and 4 kHz, respectively. The analyzes were based on ABNT, ASTM, UL. Based on these results, it can be concluded that the eco-composite produced the hem of coconut can be used as thermal and acoustic insulation. Thus, it gives a more noble end to this material, which most often is burned or disposed of improperly in the environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The advance of drilling in deeper wells has required more thermostable materials. The use of synthetic fluids, which usually have a good chemical stability, faces the environmental constraints, besides it usually generate more discharge and require a costly disposal treatment of drilled cuttings, which are often not efficient and require mechanical components that hinder the operation. The adoption of aqueous fluids generally involves the use of chrome lignosulfonate, used as dispersant, which provides stability on rheological properties and fluid loss under high temperatures and pressures (HTHP). However, due to the environmental impact associated with the use of chrome compounds, the drilling industry needs alternatives that maintain the integrity of the property and ensure success of the operation in view of the strong influence of temperature on the viscosity of aqueous fluids and polymers used in these type fluids, often polysaccharides, passives of hydrolysis and biological degradation. Therefore, vinyl polymers were selected for this study because they have predominantly carbon chain and, in particular, polyvinylpyrrolidone (PVP) for resisting higher temperatures and partially hydrolyzed polyacrylamide (PHPA) and clay by increasing the system's viscosity. Moreover, the absence of acetal bonds reduces the sensitivity to attacks by bacteria. In order to develop an aqueous drilling fluid system for HTHP applications using PVP, HPAM and clay, as main constituents, fluid formulations were prepared and determined its rheological properties using rotary viscometer of the Fann, and volume filtrate obtained by filtration HTHP following the standard API 13B-2. The new fluid system using polyvinylpyrrolidone (PVP) with high molar weight had higher viscosities, gels and yield strength, due to the effect of flocculating clay. On the other hand, the low molecular weight PVP contributed to the formation of disperse systems with lower values in the rheological properties and fluid loss. Both systems are characterized by thermal stability gain up to around 120 ° C, keeping stable rheological parameters. The results were further corroborated through linear clay swelling tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ceramics industry generates waste at various stages of that process, defective products, waste from burning solid fuels, among others. This waste is dumped in landfills, garbage dumps or directly on roads, which has a negative environmental impact. This paper presents a study to incorporate the waste of algaroba wood and chamote (scrap pieces of ceramic already sintered), in to the ceramic material for making sealing blocks. The methodological procedures consist in the characterization of chemical and mineralogical residues, raw materials, and physical-mechanical of the formulations of mixes with clay, silt and waste. By pressing test pieces were produced using a pressure of 200 kgf/cm², varying compositions in the range of 0%, 5%, 10% and 15% by weight of residue. The sintering was performed in a muffle furnace, with the temperature levels of 850 ° C, 900 ° C, 950 ° C, 1000 ° C and 1050 ° C. The evaluated physical and mechanical properties were: Water Absorption, Linear Shrinkage Burning, Apparent Porosity, Apparent Density and Mechanical Resistance to Flexion. Analysis was carried out by Scanning Electron Microscopy on fracture surfaces of the specimens. Evaluation of linear shrinkage property drying and firing , water absorption and mechanical resistance to compression of the sealing blocks 5% wood ash residue, sintered at 900 °C hold temperature in the laboratory the products manufactured on an industrial scale. The main results, it was found on the viability of using the residues of algaroba wood and to confer refractory properties of the ceramic product. The main results, it was concluded feasibility of using the ash residues algaroba wood to impart refractory properties to the ceramic product and the residue of chamote, being derived from the own ceramic product not interfere with the properties, when used in a percentage of up to 5%.Since the residue of chamote being derived from the ceramic product itself had no effect on the properties. Studies in the laboratory have shown that the incorporation of up to 5% of these residues may be adopted as an alternative technology to reduce the environmental impact caused by the industrial sector, without compromising the final properties of the material, since the results on an industrial scale showed absorption values 11.66 and 11.74 of water and waste products respectively, within the parameters of NBR - 15,270, since the mechanical strength was 1.25 MPa and 0.94 MPa respectively for products with and without residue, lower than the minimum required by the technical standard that is 1.5 MPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ceramics industry generates waste at various stages of that process, defective products, waste from burning solid fuels, among others. This waste is dumped in landfills, garbage dumps or directly on roads, which has a negative environmental impact. This paper presents a study to incorporate the waste of algaroba wood and chamote (scrap pieces of ceramic already sintered), in to the ceramic material for making sealing blocks. The methodological procedures consist in the characterization of chemical and mineralogical residues, raw materials, and physical-mechanical of the formulations of mixes with clay, silt and waste. By pressing test pieces were produced using a pressure of 200 kgf/cm², varying compositions in the range of 0%, 5%, 10% and 15% by weight of residue. The sintering was performed in a muffle furnace, with the temperature levels of 850 ° C, 900 ° C, 950 ° C, 1000 ° C and 1050 ° C. The evaluated physical and mechanical properties were: Water Absorption, Linear Shrinkage Burning, Apparent Porosity, Apparent Density and Mechanical Resistance to Flexion. Analysis was carried out by Scanning Electron Microscopy on fracture surfaces of the specimens. Evaluation of linear shrinkage property drying and firing , water absorption and mechanical resistance to compression of the sealing blocks 5% wood ash residue, sintered at 900 °C hold temperature in the laboratory the products manufactured on an industrial scale. The main results, it was found on the viability of using the residues of algaroba wood and to confer refractory properties of the ceramic product. The main results, it was concluded feasibility of using the ash residues algaroba wood to impart refractory properties to the ceramic product and the residue of chamote, being derived from the own ceramic product not interfere with the properties, when used in a percentage of up to 5%.Since the residue of chamote being derived from the ceramic product itself had no effect on the properties. Studies in the laboratory have shown that the incorporation of up to 5% of these residues may be adopted as an alternative technology to reduce the environmental impact caused by the industrial sector, without compromising the final properties of the material, since the results on an industrial scale showed absorption values 11.66 and 11.74 of water and waste products respectively, within the parameters of NBR - 15,270, since the mechanical strength was 1.25 MPa and 0.94 MPa respectively for products with and without residue, lower than the minimum required by the technical standard that is 1.5 MPa.