47 resultados para Energia elétrica - Racionamento - Brasil
Resumo:
One of several techniques applied to production processes oil is the artificial lift, using equipment in order to reduce the bottom hole pressure, providing a pressure differential, resulting in a flow increase. The choice of the artificial lift method depends on a detailed analysis of the some factors, such as initial costs of installation, maintenance, and the existing conditions in the producing field. The Electrical Submersible Pumping method (ESP) appears to be quite efficient when the objective is to produce high liquid flow rates in both onshore and offshore environments, in adverse conditions of temperature and in the presence of viscous fluids. By definition, ESP is a method of artificial lift in which a subsurface electric motor transforms electrical into mechanical energy to trigger a centrifugal pump of multiple stages, composed of a rotating impeller (rotor) and a stationary diffuser (stator). The pump converts the mechanical energy of the engine into kinetic energy in the form of velocity, which pushes the fluid to the surface. The objective of this work is to implement the optimization method of the flexible polyhedron, known as Modified Simplex Method (MSM) applied to the study of the influence of the modification of the input and output parameters of the centrifugal pump impeller in the channel of a system ESP. In the use of the optimization method by changing the angular parameters of the pump, the resultant data applied to the simulations allowed to obtain optimized values of the Head (lift height), lossless efficiency and the power with differentiated results.
Resumo:
The addition of hydrogen gas as an alternative fuel source has been widely used, as well reported in scientific literature. Today, several experiments are underway for the use of hydrogen generators (electrolysers) demand for motor vehicles. In all these products their ads manufacturers claim that this provides a reduction of fuel consumption, reduces the emission levels of toxic gas by the discharge and improves engine life. This research analyzes the physical structure of engine components using electrolysis on demand. To this end, a stationary system was fitted with a power generator of electricity, drum roller and adapted two electrolyzers: a dry cell and wet cell other. In steps observation were consumption analyzes in four work load ranges and observing the piston engine, which has been cut and analyzed by Optical Microscopy (OM), Scanning Electron Microscopy and Dispersive Energy (SEM-EDS), X – Ray Diffraction (XRD) and Confocal Microscopy, the stationary system in each step. The results showed a considerable reduction in fuel consumption and a high corrosion in the original factory piston constituted of aluminum-silicon alloy. As corrosion barrier was made a plasma nitriding in the piston head, which proved resistant to attack by hydrogen, although it has presented evidence also, of having been attacked. It is concluded that the automotive electrolysers can be a good choice in terms of consumption and reducing toxic gas emissions, but the material of the combustion chambers of vehicles must be prepared for this purpose.
Resumo:
An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.
Resumo:
The goal of the power monitoring in electrical power systems is to promote the reliablility as well as the quality of electrical power.Therefore, this dissertation proposes a new theory of power based on wavelet transform for real-time estimation of RMS voltages and currents, and some power amounts, such as active power, reactive power, apparent power, and power factor. The appropriate estimation the of RMS and power values is important for many applications, such as: design and analysis of power systems, compensation devices for improving power quality, and instruments for energy measuring. Simulation and experimental results obtained through the proposed MaximalOverlap Discrete Wavelet Transform-based method were compared with the IEEE Standard 1459-2010 and the commercial oscilloscope, respectively, presenting equivalent results. The proposed method presented good performance for compact mother wavelet, which is in accordance with real-time applications.
Resumo:
A typical electrical power system is characterized by centr alization of power gene- ration. However, with the restructuring of the electric sys tem, this topology is changing with the insertion of generators in parallel with the distri bution system (distributed gene- ration) that provides several benefits to be located near to e nergy consumers. Therefore, the integration of distributed generators, especially fro m renewable sources in the Brazi- lian system has been common every year. However, this new sys tem topology may result in new challenges in the field of the power system control, ope ration, and protection. One of the main problems related to the distributed generati on is the islanding formation, witch can result in safety risk to the people and to the power g rid. Among the several islanding protection techniques, passive techniques have low implementation cost and simplicity, requiring only voltage and current measuremen ts to detect system problems. This paper proposes a protection system based on the wavelet transform with overcur- rent and under/overvoltage functions as well as infomation of fault-induced transients in order to provide a fast detection and identification of fault s in the system. The propo- sed protection scheme was evaluated through simulation and experimental studies, with performance similar to the overcurrent and under/overvolt age conventional methods, but with the additional detection of the exact moment of the fault.
Resumo:
Electrical disturbances such as voltage sags, interruptions and voltage unbalances might cause serious problems for the end-user and for the companies of generation and transmission of energy. Few years ago, those companies have been using methods and equipments of protection to avoid the disturbances’ presence or to mitigate their effects on the power system. Disturbances generators are used to analyse the behavior of electrical and electronic equipments affected by disturbances. The analysis of those failures allows the development of appropriated protection equipments. In this paper, the development of a disturbances generator based on power converters is presented. The disturbance generator developed is able to generate some symmetrical disturbances, such as: voltage sags, voltage swells and harmonic distortion. The control strategy used in the disturbance generator is based on discrete and repetitive control. The steps of the design of the control and of the filter used for reducing harmonic in the output, are detailed in the text. Are presented the obtained results on computational simulations and the obtained results on laboratory tests.
Resumo:
Household refrigerators are equipments that represent a significant portion on the eletricity consumption of Brazilian homes. The use of these devices with low energy efficiency contributes to increase the energy consumption. The energy efficiency of a refrigerator is a function of the interaction between the coolant fluid and the components of the thermodynamic cycle. Changes in load and/or nature of the coolant may modify the condensing and/or evaporation pressures. The volumetric capacity of the compressor, the mass flow of coolant and the compression power are dependent parameters of the condensation and evaporation pressures. Thus, the expansion devices exert an importante role in the balance of these pressures, being fundamental for the better performance of the refrigeration cycle. This experimental research aims to investigate the sensitivity of the performance parameters of a household refrigerator operating with R134a and at different evaporation pressures. Therefore, a small refrigerator was instrumented with temperature, pressure sensors and other variables of interest, installed along the cooling circuit, in order to allow the thermal mapping and the evaluation of the equipment performance parameters. The variation of pressure loss in the coolant fluid resulting from the operation of the expansion valve with micrometric adjustment that modifies the evaporation temperature, influencing significantly the performance parameters of the thermodynamic refrigeration cycle.
Resumo:
Smart Grids are a new trend of electric power distribution, the future of current systems. These networks are continually being introduced in order to improve the reliability of systems, providing alternatives to energy supply and cost savings. Faced with increasing electric power grids complexity, the energy demand and the introduction of alternative sources to energy generation, all components of system require a fully integration in order to achieve high reliability and availability levels (dependability). The systematization of a Smart Grid from the Fault Tree formalism enable the quantitative evaluation of dependability of a specific scenario. In this work, a methodology for dependability evaluation of Smart Grids is proposed. A study of case is described in order to validate the proposal. With the use of this methodology, it is possible to estimate during the early design phase the reliability, availability of Smart Grid beyond to identify the critical points from the failure and repair distributions of components.
Resumo:
In the oil industry, natural gas is a vital component of the world energy supply and an important source of hydrocarbons. It is one of the cleanest, safest and most relevant of all energy sources, and helps to meet the world's growing demand for clean energy in the future. With the growing share of natural gas in the Brazil energy matrix, the main purpose of its use has been the supply of electricity by thermal power generation. In the current production process, as in a Natural Gas Processing Unit (NGPU), natural gas undergoes various separation units aimed at producing liquefied natural gas and fuel gas. The latter should be specified to meet the thermal machines specifications. In the case of remote wells, the process of absorption of heavy components aims the match of fuel gas application and thereby is an alternative to increase the energy matrix. Currently, due to the high demand for this raw gas, research and development techniques aimed at adjusting natural gas are studied. Conventional methods employed today, such as physical absorption, show good results. The objective of this dissertation is to evaluate the removal of heavy components of natural gas by absorption. In this research it was used as the absorbent octyl alcohol (1-octanol). The influence of temperature (5 and 40 °C) and flowrate (25 and 50 ml/min) on the absorption process was studied. Absorption capacity expressed by the amount absorbed and kinetic parameters, expressed by the mass transfer coefficient, were evaluated. As expected from the literature, it was observed that the absorption of heavy hydrocarbon fraction is favored by lowering the temperature. Moreover, both temperature and flowrate favors mass transfer (kinetic effect). The absorption kinetics for removal of heavy components was monitored by chromatographic analysis and the experimental results demonstrated a high percentage of recovery of heavy components. Furthermore, it was observed that the use of octyl alcohol as absorbent was feasible for the requested separation process.
Resumo:
In the oil industry, natural gas is a vital component of the world energy supply and an important source of hydrocarbons. It is one of the cleanest, safest and most relevant of all energy sources, and helps to meet the world's growing demand for clean energy in the future. With the growing share of natural gas in the Brazil energy matrix, the main purpose of its use has been the supply of electricity by thermal power generation. In the current production process, as in a Natural Gas Processing Unit (NGPU), natural gas undergoes various separation units aimed at producing liquefied natural gas and fuel gas. The latter should be specified to meet the thermal machines specifications. In the case of remote wells, the process of absorption of heavy components aims the match of fuel gas application and thereby is an alternative to increase the energy matrix. Currently, due to the high demand for this raw gas, research and development techniques aimed at adjusting natural gas are studied. Conventional methods employed today, such as physical absorption, show good results. The objective of this dissertation is to evaluate the removal of heavy components of natural gas by absorption. In this research it was used as the absorbent octyl alcohol (1-octanol). The influence of temperature (5 and 40 °C) and flowrate (25 and 50 ml/min) on the absorption process was studied. Absorption capacity expressed by the amount absorbed and kinetic parameters, expressed by the mass transfer coefficient, were evaluated. As expected from the literature, it was observed that the absorption of heavy hydrocarbon fraction is favored by lowering the temperature. Moreover, both temperature and flowrate favors mass transfer (kinetic effect). The absorption kinetics for removal of heavy components was monitored by chromatographic analysis and the experimental results demonstrated a high percentage of recovery of heavy components. Furthermore, it was observed that the use of octyl alcohol as absorbent was feasible for the requested separation process.
Resumo:
With the progress of devices technology, generation and use of energy ways, power quality parameters start to influence more significantly the various kinds of power consumers. Currently, there are many types of devices that analyze power quality. However, there is a need to create devices, and perform measurements and calculate parameters, find flaws, suggest changes, and to support the management of the installation. In addition, you must ensure that such devices are accessible. To maintain this balance, one magnitude measuring method should be used which does not require great resources processing or memory. The work shows that application of the Goertzel algorithm, compared with the commonly used FFT allows measurements to be made using much less hardware resources, available memory space to implement management functions. The first point of the work is the research of troubles that are more common for low voltage consumers. Then we propose the functional diagram indicate what will be measured, calculated, what problems will be detected and that solutions can be found. Through the Goertzel algorithm simulation using Scilab, is possible to calculate frequency components of a distorted signal with satisfactory results. Finally, the prototype is assembled and tests are carried out by adjusting the parameters necessary for one to maintain a reliable device without increasing its cost.
Resumo:
This study aimed to evaluate the potential of oxidative electrochemical treatment coupled with adsorption process using expanded perlite as adsorbent in the removal of textile dyes, Red Remazol and Novacron Blue on synthetic effluent. Dyes and perlite were characterized by thermogravimetry techniques (TG), Differential Scanning Calorimetry (DSC), Spectroscopy infrared (IR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Electrochemical treatments used as anodes, Ti/Pt and Pb/PbO2 under different conditions: 60 minutes, current density 20, 40 e 60 mAcm-2, pH 1, 4.5 e 8 and temperature variation 20, 40 e 60 ºC. In the case of adsorption tests, contact time of 30 minutes for the Remazol Red dye and 20 minutes for Novacron Blue were established, while pH 1, 4.5 e 8, 500 mg adsorbent and temperature variation 20, 40 e 60 ºC were used for both treatments. The results indicated that both treatments, electroxidation/adsorption and the adsorption/electroxidation, were effective for removing color from synthetic solutions. The consumption of electricity allowed to evaluate the applicability of the electrochemical process, providing very acceptable values, which allowed us to estimate the cost. Total organic carbon (TOC) and Gas Chromatography linked mass spectrometer (GC-MS) analyzes were performed, showing that the better combination for removing organic matter is by Pb/PbO2 and perlite. Meanwhile, GC-MS indicated that the by-products formed are benzoic acid, phthalic acid, thiocarbamic acid, benzene, chlorobenzene, phenol-2-ethyl and naphthalene when Remazol Red was degraded. Conversely, aniline, phthalic acid, 1, 6 - dimethylnaphthalene, naphthalene and ion hidroxobenzenosulfonat was detected when Novacron Blue was studied. Analyses obtained through atomic absorption spectrometry showed that there was release of lead in the electrochemical oxidation of analyzes that were performed with the anode Pb/PbO2, but these values are reduced by subjecting the effluent to adsorption analysis. According to these results, sequential techniques electroxidation/adsorption and adsorption/electroxidation are to treat solutions containing dyes.
Resumo:
This study aimed to evaluate the potential of oxidative electrochemical treatment coupled with adsorption process using expanded perlite as adsorbent in the removal of textile dyes, Red Remazol and Novacron Blue on synthetic effluent. Dyes and perlite were characterized by thermogravimetry techniques (TG), Differential Scanning Calorimetry (DSC), Spectroscopy infrared (IR), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and X-ray fluorescence (XRF) techniques. Electrochemical treatments used as anodes, Ti/Pt and Pb/PbO2 under different conditions: 60 minutes, current density 20, 40 e 60 mAcm-2, pH 1, 4.5 e 8 and temperature variation 20, 40 e 60 ºC. In the case of adsorption tests, contact time of 30 minutes for the Remazol Red dye and 20 minutes for Novacron Blue were established, while pH 1, 4.5 e 8, 500 mg adsorbent and temperature variation 20, 40 e 60 ºC were used for both treatments. The results indicated that both treatments, electroxidation/adsorption and the adsorption/electroxidation, were effective for removing color from synthetic solutions. The consumption of electricity allowed to evaluate the applicability of the electrochemical process, providing very acceptable values, which allowed us to estimate the cost. Total organic carbon (TOC) and Gas Chromatography linked mass spectrometer (GC-MS) analyzes were performed, showing that the better combination for removing organic matter is by Pb/PbO2 and perlite. Meanwhile, GC-MS indicated that the by-products formed are benzoic acid, phthalic acid, thiocarbamic acid, benzene, chlorobenzene, phenol-2-ethyl and naphthalene when Remazol Red was degraded. Conversely, aniline, phthalic acid, 1, 6 - dimethylnaphthalene, naphthalene and ion hidroxobenzenosulfonat was detected when Novacron Blue was studied. Analyses obtained through atomic absorption spectrometry showed that there was release of lead in the electrochemical oxidation of analyzes that were performed with the anode Pb/PbO2, but these values are reduced by subjecting the effluent to adsorption analysis. According to these results, sequential techniques electroxidation/adsorption and adsorption/electroxidation are to treat solutions containing dyes.
Resumo:
PEDRINI, Aldomar; SZOKOLAY, Steven. Recomendações para o desenvolvimento de uma ferramenta de suporte às primeiras decisões projetuais visando ao desempenho energético de edificações de escritório em clima quente. Ambiente Construído, Porto Alegre, v. 5, n. 1, p.39-54, jan./mar. 2005. Trimestral. Disponível em:
Resumo:
The consumption of energy on the planet is currently based on fossil fuels. They are responsible for adverse effects on the environment. Renewables propose solutions for this scenario, but must face issues related to the capacity of the power supply. Wind energy offshore emerging as a promising alternative. The speed and stability are greater winds over oceans, but the variability of these may cause inconvenience to the generation of electric power fluctuations. To reduce this, a combination of wind farms geographically distributed was proposed. The greater the distance between them, the lower the correlation between the wind velocity, increasing the likelihood that together achieve more stable power system with less fluctuations in power generation. The efficient use of production capacity of the wind park however, depends on their distribution in marine environments. The objective of this research was to analyze the optimal allocation of wind farms offshore on the east coast of the U.S. by Modern Portfolio Theory. The Modern Portfolio Theory was used so that the process of building portfolios of wind energy offshore contemplate the particularity of intermittency of wind, through calculations of return and risk of the production of wind farms. The research was conducted with 25.934 observations of energy produced by wind farms 11 hypothetical offshore, from the installation of 01 simulated ocean turbine with a capacity of 5 MW. The data show hourly time resolution and covers the period between January 1, 1998 until December 31, 2002. Through the Matlab R software, six were calculated minimum variance portfolios, each for a period of time distinct. Given the inequality of the variability of wind over time, set up four strategies rebalancing to evaluate the performance of the related portfolios, which enabled us to identify the most beneficial to the stability of the wind energy production offshore. The results showed that the production of wind energy for 1998, 1999, 2000 and 2001 should be considered by the portfolio weights calculated for the same periods, respectively. Energy data for 2002 should use the weights derived from the portfolio calculated in the previous time period. Finally, the production of wind energy in the period 1998-2002 should also be weighted by 1/11. It follows therefore that the portfolios found failed to show reduced levels of variability when compared to the individual production of wind farms hypothetical offshore