63 resultados para Carga eletrica
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load
Resumo:
In the execution of civil engineering works, either by wasting during the coating of wall or demolition of gypsum walls, the generation of the gypsum waste involves serious environmental concerns. These concerns are increased by the high demand of this raw material in the sector and by the difficulties of proper disposal byproduct generated. In the search for alternatives to minimize this problem, many research works are being conducted, giving emphasis in using gypsum waste as fillers in composites materials in order to improve the acoustic, thermal and mechanical performances. Through empirical testing, it was observed that the crystallization water contained in the residue (CaSO4.2H2O) could act like primary agent in the expanding of the polyurethane foam. Considering that polyurethane produced from vegetable oils are biodegradable synthetic polymers and that are admittedly to represent an alternative to petrochemical synthetic polyurethane, this research consist an analysis of the thermal behavior of a composite whose matrix obtained from a resin derived from the expansive castor oil seed, with loads of 4%, 8%, 12% and 16% of gypsum waste replacing to the polyol prepolymer blend. Contributors to this analysis: a characterization of the raw material through analysis of spectroscopy by Fourier transform infrared (FTIR), chemical analysis by X-Ray Fluorescence (XRF) and mineralogical analysis by X Ray Diffraction (XRD), complemented by thermo gravimetric analysis (TGA). In order to evaluate the thermo physical properties and thermal behavior of the composites manufactured in die closed with expansion contained, were also carried tests to determine the percentage of open pore volume using a gas pycnometer, scanning electronic microscopy (SEM), in addition to testing of flammability and the resistance to contact with hot surfaces. Through the analysis of the results, it appears that it is possible to produce a new material, which few changes in their thermo physical properties and thermal performance, promotes significant changes and attractive to the environment
Resumo:
The standardization of the bovine skin thickness in the leather industry generates a residue known as wet-blue . At the end of twentieth century, the brazilian industry discarded about 131 thousand tons of this residue in nature, provoking a great environmental liability. In this paper is presented the analyses of the termophysical properties, thermal and volumetric expansion performance of a composite of vegetable resin of castor oil plant (Ricinus communis) with load of industrial residue of leather "wet-blue", for application as thermal isolation material of warm surfaces. There were considered four percentile levels of residue load in the proportions in mass of 0%, 5%, 10% and 15%, added to the expansible resin of castor oil plant in two configurations: sawed leather and crushed leather in a smaller particle (powder) by grinding in a mill of balls. Twenty-one proof bodies were produced for termophysical properties analysis (three for each configuration) and four proof bodies for rehearsals of thermal acting. Analyses of thermal acting were done in test cameras. The results of the rehearsals were compared to those obtained considering the castor oil plant foam without residue addition. A small reduction of the thermal conductivity of the composite was observed in the proportion of 10% of leather residue in both configurations. Regarding thermal conductivity, calorific capacity and diffusivity, it was verified that the proposed composite showed very close values to the commercial insulating materials (glass wool, rock wool, EPS). It was still demonstrated the technical viability of the use of composite as insulating thermal for systems of low potency. The composite presented larger volumetric expansion with 15% of sawed residue of leather.
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
Space Science was built using a composite made of plaster, EPS, shredded tires, cement and water. Studies were conducted to thermal and mechanical resistance. Inside the mold EPS plates were placed in order to obtain a higher thermal resistance on the wall constructed, as well as to give it an end environmentally friendly in view of both the tire and the EPS occupy a large space in landfills and year need to be degraded when released into the environment. Compression tests were performed according to ABNT blocks to seal, measurements of the temperature variation in the external and internal walls using a laser thermometer and check the temperature of the indoor environment using a thermocouple attached to a digital thermometer. The experiments demonstrated the heat provided by the composite values from the temperature difference between the internal and external surfaces on the walls, reaching levels of 12.4 ° C and room temperature in the interior space of the Science of 33.3 ° C, remaining within the zone thermal comfort for hot climate countries. It was also demonstrated the proper mechanical strength of such a composite for sealing walls. The proposed use of the composite can contribute to reducing the extreme housing shortage in our country, producing popular homes at low cost and with little time to work
Resumo:
Fuel is a material used to produce heat or power by burning, and lubricity is the capacity for reducing friction. The aim of this work is evaluate the lubricity of eight fossil and renewable fuels used in Diesel engines, by means of a HFRR tester, following the ASTM D 6079-04 Standard. In this conception, a sphere of AISI 52100 steel (diameter of 6,000,05 mm, Ra 0,050,005 μm, E = 210 GPa, HRC 624, HV0,2 63147) is submitted to a reciprocating motion under a normal load of 2 N and 50 Hz frequency to promote a wear track length of 1.10.1mm in a plan disc of AISI 52100 steel (HV0,05 18410, Ra 0,020,005 μm). The testing extent time was 75 minutes, 225,000 cycles. Each one test was repeated six times to furnish the results, by means of intrinsic signatures from the signals of the lubricant film percentage, friction coefficient, contact heating, Sound Pressure Level, SPL [dB]. These signal signatures were obtained by two thermocouples and a portable decibelmeter coupled to a data acquisition system and to the HFRR system. The wettability of droplet of the diesel fuel in thermal equilibrium on a horizontal surface of a virgin plan disc of 52100 steel, Ra 0,02 0,005 μm, were measured by its contact angle of 7,0 3,5o, while the results obtained for the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of soybean oil were, respectively, 7,5 3,5o, 13,5 3,5o e 19,0 1,0o; for the distilled water, 78,0 6,0o; the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of sunflower oil were, respectively, 7,0 4,0o, 8,5 4,5o e 19,5 2,5o. Different thickness of lubricant film were formed and measured by their percentage by means of the contact resistance technique, suggesting several regimes, since the boundary until the hydrodynamic lubrication. All oils analyzed in this study promoted the ball wear scars with diameters smaller than 400 μm. The lowest values were observed in the scar balls lubricated by mixtures B100, B20 and B5 of sunflower and B20 and B5 of soybean oils (WSD < 215 μm)
Resumo:
With a view to revitalizing public environments through criteria that include economy, tourism, aesthetics and respect for the environment, this paper proposes a model of kiosk manufactured with composite material blocks, to be employed as a public instrument. . The model consists of a structure composed of planned blocks and manufactured in cement-based composite, gypsum, ground and water, having the styrofoam inside filled with pet bottles of 500 ml dose. The social and environmental issue is the critical point of the work when it can, through the reuse of environmentally harmful materials such as polyethylene terephthalate PET, using such modules for the construction of various areas of Commerce, promoting the protection of the environment combined with the improvement of the quality of life of the population. The tourism factor, which is significant in the economy of the North, is also considered as the modulated kiosk has a visual aspect innovative and differentiated. The environmental issue is addressed by encouraging the reuse of PET material and EPS (polystyrene)
Resumo:
Introduction: The intrinsic gait disorders in individuals with Parkinson's disease (PD) are one of the most disabling motor symptoms. Among the therapeutic approaches used in attempts to improve the motor function, especially the gait pattern of individuals, stands out the treadmill gait training associated with the addition of load. However, there are few findings that elucidate the benefits arising from such practice. Objective: To assess the effects of adding load on the treadmill gait training in individuals with PD. Material and Methods: A controlled, randomized and blinded clinical trial, was performed with a sample of 27 individuals (18 men and 9 women) with PD, randomly assigned to three experimental conditions, namely: treadmill gait training (n=9), treadmill gait training associated with addition of 5% load (n=9) and treadmill gait training associated with addition of 10% load (n=9). All volunteers were assessed, during phase on of Parkinson's medication, regarding to demographic, clinical and anthropometric (identification form) data, level of disability (Hoehn and Yahr Modified Scale), cognitive function (Mini Mental State Examination), clinical functional - in those areas activity of daily living and motor examination (Unified Parkinson's Disease Rating Scale - UPDRS) and gait cinematic analysis was performed through Qualisys Motion Capture System®. The intervention protocol consisted of gait training in a period of 4 consecutive weeks, with three weekly sessions, lasting 30 minutes each. The post-intervention assessment occurred the next day after the last training session, which was performed cinematic analysis of gait and the UPDRS. Data analysis was performed using the software Statistical Package for Social Sciences® (SPSS) 17.0. Results: The age of volunteers ranged from 41 to 75 years old (62,26 ± 9,07) and the time of clinical diagnosis of PD between 2 to 9 years (4,56 ± 2,42). There was a reduction regarding the score from motor exam domain (p=0,005), only when training with the addition of a 5% load. As for the space-time variables there was no significant difference between groups (p>0,120); however, the training with addition of 5% load presented the following changes: increase in stride length (p=0,028), in step length (p=0,006), in time balance of the most affected member (p=0,006) and reduction in support time of the referred member (p=0,007). Regarding angular variables significant differences between groups submitted to treadmill gait training without addition load and with 5% of load were observed in angle of the ankle at initial contact (p=0,019), in plantar flexion at toe-off (p=0,003) and in the maximum dorsiflexion in swing (p=0,005). While within groups, there was a reduction in amplitude of motion of the ankle (p=0,048), the only workout on the treadmill. Conclusion: The treadmill gait training with addition of 5% load proved to be a better experimental condition than the others because it provided greater gains in a number of variables (space-time and angular gait) and in the motion function, becoming a therapy capable of effectively improving the progress of individuals with PD
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The knowledge of the rheological behavior of microemulsionated systems (SME) is of fundamental importance due to the diversity of industrial applications of these systems. This dissertation presents the rheological behavior of the microemulsionated system formed by RNX 95/alcohol isopropyl/p-toulen sodium sulfonate/kerosene/distilled water with the addition of polyacrylamide polymer. It was chosen three polymers of the polyacrylamide type, which differ in molar weight and charge density. It was studied the addition of these polymers in relatively small concentration 0,1% in mass and maximum concentration of 2,0%. It was made analysis of flow to determine the appearing viscosities of the SME and rheological parameters applying Bingham, Ostwald de Waale and Herschell-Buckley models. The behavior into saline environment of this system was studied for a solution of KCl 2,0%, replacing the distilled water. It was determined the behavior of microemulsions in relation with the temperature through curves of flow in temperatures of 25 to 60ºC in variations of 5ºC. After the analysis of the results the microemulsion without the addition of polymer presented a slight increase in its viscosity, but it does not mischaracterize it as a Newtonian fluid. However the additive systems when analyzed with low concentration of polymer adjusted well to the applied models, with a very close behavior of microemulsion. The higher concentration of the polymer gave the systems a behavior of plastic fluid. The results of the temperature variation point to an increase of viscosity in the systems that can be related to structural changes in the micelles formed in the own microemulsion without the addition of polymer
Resumo:
The piles are one of the most important types of solution adopted for the foundation of buildings. They are responsible for transmitting to the soil in deepe r and resistant layers loads from structures. The interaction of the foundation element with the soil is a very important variable, making indispensable your domain in order to determine the strength of the assembly and establish design criteria for each c ase of application of the pile. In this research analyzes were performed f rom experiments load tests for precast concrete piles and inve stigations of soil of type SPT, a study was performed for obtaining the ultimate load capacity of the foundation through methods extrapolation of load - settlement curve , semi - empirical and theoretic . After that, were realized comparisons between the different methods used for two types of soil a granular behavior and other cohesive. For obtaining soil paramet ers to be used i n the methods were established empirical correlations with the standard penetration number (NSPT). The charge - settlement curves of the piles are also analyzed. In the face of established comparisons was indicated the most reliable semiempirical method Déco urt - Quaresma as the most reliable for estimating the tensile strength for granular and cohesive soils. Meanwhile, among the methods studied extrapolation is recommended method of Van der Veen as the most appropriate for predicting the tensile strength.
Resumo:
The sizing of nursing human resources is an essential management tool to meet the needs of the patients and the institution. Regarding to the Intensive Care Unit, where the most critical patients are treated and the most advanced life-support equipments are used, requiring a high number of skilled workers, the use of specific indicators to measure the workload of the team becomes necessary. The Nursing Activities Score is a validated instrument for measuring nursing workload in the Intensive Care Unit that has demonstrated effectiveness. It is a cross-sectional study with the primary objective of assessing the workload of nursing staff in an adult Intensive Care Unit through the application of the Nursing Activities Score. The study was conducted in a private hospital specialized in the treatment of patients with cancer, which is located in the city of Natal (Rio Grande do Norte – Brazil). The study was approved by the Research Ethics Committee of the hospital (Protocol number 558.799; CAAE 24966013.7.0000.5293). For data collection, a form of sociodemographic characteristics of the patients was used; the Nursing Activities Score was used to identify the workload of nursing staff; and the instrument of Perroca, which classifies patients and provides data related to the their need for nursing care, was also used. The collected data were analyzed using a statistical package. The categorical variables were described by absolute and relative frequency, while the number by median and interquartile range. Considering the inferential approach, the Spearman test, the Wald chi-square, Kruskal Wallis and Mann-Whitney test were used. The statistically significant variables were those with p values <0.05. The evaluation of the overall averages of NAS, considering the first 15 days of hospitalization, was performed by the analysis of Generalized Estimating Equations (GEE), with adjust for the variable length of hospitalization. The sample consisted of 40 patients, in the period of June to August 2014. The results showed a mean age of 62,1 years (±23,4) with a female predominance (57,5%). The most frequent type of treatment was clinical (60,0%), observing an average stay of 6,9 days (±6,5). Considering the origin, most patients (35%) came from the Surgical Center. There was a mortality rate of 27,5%. 277 measures of NAS score and Perroca were performed, and the averages of 69,8% (±24,1) and 22,7% (±4.2) were obtained, respectively. There was an association between clinical outcome and value of the Nursing Activities Score in 24 hours (p <0.001), and between the degree of dependency of patients and nursing workload (rp 0,653, p<0,001). The achieved workload of the nursing staff, in the analyzed period, was presented high, showing that hospitalized patients required a high demand for care. These findings create subsidies for sizing of staff and allocation of human resources in the sector, in order to achieve greater safety and patient satisfaction as a result of intensive care, as well as an environment conducive to quality of life for the professionals
Resumo:
The conventional control schemes applied to Shunt Active Power Filters (SAPF) are Harmonic extractor-based strategies (HEBSs) because their effectiveness depends on how quickly and accurately the harmonic components of the nonlinear loads are identified. The SAPF can be also implemented without the use of the load harmonic extractors. In this case, the harmonic compensating term is obtained from the system active power balance. These systems can be considered as balanced-energy-based schemes (BEBSs) and their performance depends on how fast the system reaches the equilibrium state. In this case, the phase currents of the power grid are indirectly regulated by double sequence controllers with two degrees of freedom, where the internal model principle is employed to avoid reference frame transformation. Additionally the DSC controller presents robustness when the SAPF is operating under unbalanced conditions. Furthermore, SAPF implemented without harmonic detection schemes compensate simultaneously harmonic distortion and reactive power of the load. Their compensation capabilities, however, are limited by the SAPF power converter rating. Such a restriction can be minimized if the level of the reactive power correction is managed. In this work an estimation scheme for determining the filter currents is introduced to manage the compensation of reactive power. Experimental results are shown for demonstrating the performance of the proposed SAPF system.
Resumo:
The reverse time migration algorithm (RTM) has been widely used in the seismic industry to generate images of the underground and thus reduce the risk of oil and gas exploration. Its widespread use is due to its high quality in underground imaging. The RTM is also known for its high computational cost. Therefore, parallel computing techniques have been used in their implementations. In general, parallel approaches for RTM use a coarse granularity by distributing the processing of a subset of seismic shots among nodes of distributed systems. Parallel approaches with coarse granularity for RTM have been shown to be very efficient since the processing of each seismic shot can be performed independently. For this reason, RTM algorithm performance can be considerably improved by using a parallel approach with finer granularity for the processing assigned to each node. This work presents an efficient parallel algorithm for 3D reverse time migration with fine granularity using OpenMP. The propagation algorithm of 3D acoustic wave makes up much of the RTM. Different load balancing were analyzed in order to minimize possible losses parallel performance at this stage. The results served as a basis for the implementation of other phases RTM: backpropagation and imaging condition. The proposed algorithm was tested with synthetic data representing some of the possible underground structures. Metrics such as speedup and efficiency were used to analyze its parallel performance. The migrated sections show that the algorithm obtained satisfactory performance in identifying subsurface structures. As for the parallel performance, the analysis clearly demonstrate the scalability of the algorithm achieving a speedup of 22.46 for the propagation of the wave and 16.95 for the RTM, both with 24 threads.