40 resultados para Arquiteturas enterradas
Resumo:
This work deals with the research and development of a Pulse Width Programmable Gain Integrating Amplifier. Two Pulse Width Programmable Gain Amplifier architectures are proposed, one based on discrete components and another based on switched capacitors. From the operating requirements defined for the study, parameters are defined and simulations are carried out to validate the architecture. Subsequently, the circuit and the software are developed and tested. It is performed the evaluation of the circuits regarding the two proposed architectures, and from that, an architecture is selected to be improved, aiming the development of an integrated circuit in a future work.
Resumo:
A computação ubíqua é um paradigma no qual dispositivos com capacidade de processamento e comunicação são embutidos nos elementos comuns de nossas vidas (casas, carros, máquinas fotográficas, telefones, escolas, museus, etc), provendo serviços com um alto grau de mobilidade e transparência. O desenvolvimento de sistemas ubíquos é uma tarefa complexa, uma vez que envolve várias áreas da computação, como Engenharia de Software, Inteligência Artificial e Sistemas Distribuídos. Essa tarefa torna-se ainda mais complexa pela ausência de uma arquitetura de referência para guiar o desenvolvimento de tais sistemas. Arquiteturas de referência têm sido usadas para fornecer uma base comum e dar diretrizes para a construção de arquiteturas de softwares para diferentes classes de sistemas. Por outro lado, as linguagens de descrição arquitetural (ADLs) fornecem uma sintaxe para representação estrutural dos elementos arquiteturais, suas restrições e interações, permitindo-se expressar modelo arquitetural de sistemas. Atualmente não há, na literatura, ADLs baseadas em arquiteturas de referência para o domínio de computação ubíqua. De forma a permitir a modelagem arquitetural de aplicações ubíquas, esse trabalho tem como objetivo principal especificar UbiACME, uma linguagem de descrição arquitetural para aplicações ubíquas, bem como disponibilizar a ferramenta UbiACME Studio, que permitirá arquitetos de software realizar modelagens usando UbiACME. Para esse fim, inicialmente realizamos uma revisão sistemática, de forma a investigar na literatura relacionada com sistemas ubíquos, os elementos comuns a esses sistemas que devem ser considerados no projeto de UbiACME. Além disso, com base na revisão sistemática, definimos uma arquitetura de referência para sistemas ubíquos, RA-Ubi, que é a base para a definição dos elementos necessários para a modelagem arquitetural e, portanto, fornece subsídios para a definição dos elementos de UbiACME. Por fim, de forma a validar a linguagem e a ferramenta, apresentamos um experimento controlado onde arquitetos modelam uma aplicação ubíqua usando UbiACME Studio e comparam com a modelagem da mesma aplicação em SySML.
Resumo:
The continuous evolution of integrated circuit technology has allowed integrating thousands of transistors on a single chip. This is due to the miniaturization process, which reduces the diameter of wires and transistors. One drawback of this process is that the circuit becomes more fragile and susceptible to break, making the circuit more susceptible to permanent faults during the manufacturing process as well as during their lifetime. Coarse Grained Reconfigurable Architectures (CGRAs) have been used as an alternative to traditional architectures in an attempt to tolerate such faults due to its intrinsic hardware redundancy and high performance. This work proposes a fault tolerance mechanism in a CGRA in order to increase the architecture fault tolerance even considering a high fault rate. The proposed mechanism was added to the scheduler, which is the mechanism responsible for mapping instructions onto the architecture. The instruction mapping occurs at runtime, translating binary code without the need for recompilation. Furthermore, to allow faster implementation, instruction mapping is performed using a greedy module scheduling algorithm, which consists of a software pipeline technique for loop acceleration. The results show that, even with the proposed mechanism, the time for mapping instructions is still in order of microseconds. This result allows that instruction mapping process remains at runtime. In addition, a study was also carried out mapping scheduler rate. The results demonstrate that even at fault rates over 50% in functional units and interconnection components, the scheduler was able to map instructions onto the architecture in most of the tested applications.
Resumo:
High dependability, availability and fault-tolerance are open problems in Service-Oriented Architecture (SOA). The possibility of generating software applications by integrating services from heterogeneous domains, in a reliable way, makes worthwhile to face the challenges inherent to this paradigm. In order to ensure quality in service compositions, some research efforts propose the adoption of verification techniques to identify and correct errors. In this context, exception handling is a powerful mechanism to increase SOA quality. Several research works are concerned with mechanisms for exception propagation on web services, implemented in many languages and frameworks. However, to the extent of our knowledge, no works found evaluates these mechanisms in SOA with regard to the .NET framework. The main contribution of this paper is to evaluate and to propose exception propagation mechanisms in SOA to applications developed within the .NET framework. In this direction, this work: (i)extends a previous study, showing the need to propose a solution to the exception propagation in SOA to applications developed in .NET, and (ii) show a solution, based in model obtained from the results found in (i) and that will be applied in real cases through of faults injections and AOP techniques.
Resumo:
This Thesis main objective is to implement a supporting architecture to Autonomic Hardware systems, capable of manage the hardware running in reconfigurable devices. The proposed architecture implements manipulation, generation and communication functionalities, using the Context Oriented Active Repository approach. The solution consists in a Hardware-Software based architecture called "Autonomic Hardware Manager (AHM)" that contains an Active Repository of Hardware Components. Using the repository the architecture will be able to manage the connected systems at run time allowing the implementation of autonomic features such as self-management, self-optimization, self-description and self-configuration. The proposed architecture also contains a meta-model that allows the representation of the Operating Context for hardware systems. This meta-model will be used as basis to the context sensing modules, that are needed in the Active Repository architecture. In order to demonstrate the proposed architecture functionalities, experiments were proposed and implemented in order to proof the Thesis hypothesis and achieved objectives. Three experiments were planned and implemented: the Hardware Reconfigurable Filter, that consists of an application that implements Digital Filters using reconfigurable hardware; the Autonomic Image Segmentation Filter, that shows the project and implementation of an image processing autonomic application; finally, the Autonomic Autopilot application that consist of an auto pilot to unmanned aerial vehicles. In this work, the applications architectures were organized in modules, according their functionalities. Some modules were implemented using HDL and synthesized in hardware. Other modules were implemented kept in software. After that, applications were integrated to the AHM to allow their adaptation to different Operating Context, making them autonomic.
Resumo:
An important problem faced by the oil industry is to distribute multiple oil products through pipelines. Distribution is done in a network composed of refineries (source nodes), storage parks (intermediate nodes), and terminals (demand nodes) interconnected by a set of pipelines transporting oil and derivatives between adjacent areas. Constraints related to storage limits, delivery time, sources availability, sending and receiving limits, among others, must be satisfied. Some researchers deal with this problem under a discrete viewpoint in which the flow in the network is seen as batches sending. Usually, there is no separation device between batches of different products and the losses due to interfaces may be significant. Minimizing delivery time is a typical objective adopted by engineers when scheduling products sending in pipeline networks. However, costs incurred due to losses in interfaces cannot be disregarded. The cost also depends on pumping expenses, which are mostly due to the electricity cost. Since industrial electricity tariff varies over the day, pumping at different time periods have different cost. This work presents an experimental investigation of computational methods designed to deal with the problem of distributing oil derivatives in networks considering three minimization objectives simultaneously: delivery time, losses due to interfaces and electricity cost. The problem is NP-hard and is addressed with hybrid evolutionary algorithms. Hybridizations are mainly focused on Transgenetic Algorithms and classical multi-objective evolutionary algorithm architectures such as MOEA/D, NSGA2 and SPEA2. Three architectures named MOTA/D, NSTA and SPETA are applied to the problem. An experimental study compares the algorithms on thirty test cases. To analyse the results obtained with the algorithms Pareto-compliant quality indicators are used and the significance of the results evaluated with non-parametric statistical tests.
Resumo:
The real-time embedded systems design requires precise control of the passage of time in the computation performed by the modules and communication between them. Generally, these systems consist of several modules, each designed for a specific task and restricted communication with other modules in order to obtain the required timing. This strategy, called federated architecture, is already becoming unviable in front of the current demands of cost, required performance and quality of embedded system. To address this problem, it has been proposed the use of integrated architectures that consist of one or few circuits performing multiple tasks in parallel in a more efficient manner and with reduced costs. However, one has to ensure that the integrated architecture has temporal composability, ie the ability to design each task temporally isolated from the others in order to maintain the individual characteristics of each task. The Precision Timed Machines are an integrated architecture approach that makes use of multithreaded processors to ensure temporal composability. Thus, this work presents the implementation of a Precision Machine Timed named Hivek-RT. This processor which is a VLIW supporting Simultaneous Multithreading is capable of efficiently execute real-time tasks when compared to a traditional processor. In addition to the efficient implementation, the proposed architecture facilitates the implementation real-time tasks from a programming point of view.
Resumo:
This work consists basically in the elaboration of an Artificial Neural Network (ANN) in order to model the composites materials’ behavior when submitted to fatigue loadings. The proposal is to develop and present a mixed model, which associate an analytical equation (Adam Equation) to the structure of the ANN. Given that the composites often shows a similar behavior when subject to float loadings, this equation aims to establish a pre-defined comparison pattern for a generic material, so that the ANN fit the behavior of another composite material to that pattern. In this way, the ANN did not need to fully learn the behavior of a determined material, because the Adam Equation would do the big part of the job. This model was used in two different network architectures, modular and perceptron, with the aim of analyze it efficiency in distinct structures. Beyond the different architectures, it was analyzed the answers generated from two sets of different data – with three and two SN curves. This model was also compared to the specialized literature results, which use a conventional structure of ANN. The results consist in analyze and compare some characteristics like generalization capacity, robustness and the Goodman Diagrams, developed by the networks.
Resumo:
Diesel fuel is one of leading petroleum products marketed in Brazil, and has its quality monitored by specialized laboratories linked to the National Agency of Petroleum, Natural Gas and Biofuels - ANP. The main trial evaluating physicochemical properties of diesel are listed in the resolutions ANP Nº 65 of December 9th, 2011 and Nº 45 of December 20th, 2012 that determine the specification limits for each parameter and methodologies of analysis that should be adopted. However the methods used although quite consolidated, require dedicated equipment with high cost of acquisition and maintenance, as well as technical expertise for completion of these trials. Studies for development of more rapid alternative methods and lower cost have been the focus of many researchers. In this same perspective, this work conducted an assessment of the applicability of existing specialized literature on mathematical equations and artificial neural networks (ANN) for the determination of parameters of specification diesel fuel. 162 samples of diesel with a maximum sulfur content of 50, 500 and 1800 ppm, which were analyzed in a specialized laboratory using ASTM methods recommended by the ANP, with a total of 810 trials were used for this study. Experimental results atmospheric distillation (ASTM D86), and density (ASTM D4052) of diesel samples were used as basic input variables to the equations evaluated. The RNAs were applied to predict the flash point, cetane number and sulfur content (S50, S500, S1800), in which were tested network architectures feed-forward backpropagation and generalized regression varying the parameters of the matrix input in order to determine the set of variables and the best type of network for the prediction of variables of interest. The results obtained by the equations and RNAs were compared with experimental results using the nonparametric Wilcoxon test and Student's t test, at a significance level of 5%, as well as the coefficient of determination and percentage error, an error which was obtained 27, 61% for the flash point using a specific equation. The cetane number was obtained by three equations, and both showed good correlation coefficients, especially equation based on aniline point, with the lowest error of 0,816%. ANNs for predicting the flash point and the index cetane showed quite superior results to those observed with the mathematical equations, respectively, with errors of 2,55% and 0,23%. Among the samples with different sulfur contents, the RNAs were better able to predict the S1800 with error of 1,557%. Generally, networks of the type feedforward proved superior to generalized regression.
Resumo:
This master dissertation presents the study and implementation of inteligent algorithms to monitor the measurement of sensors involved in natural gas custody transfer processes. To create these algoritmhs Artificial Neural Networks are investigated because they have some particular properties, such as: learning, adaptation, prediction. A neural predictor is developed to reproduce the sensor output dynamic behavior, in such a way that its output is compared to the real sensor output. A recurrent neural network is used for this purpose, because of its ability to deal with dynamic information. The real sensor output and the estimated predictor output work as the basis for the creation of possible sensor fault detection and diagnosis strategies. Two competitive neural network architectures are investigated and their capabilities are used to classify different kinds of faults. The prediction algorithm and the fault detection classification strategies, as well as the obtained results, are presented