661 resultados para CNPQ::CIENCIAS BIOLOGICAS: MEIO AMBIENTE
Resumo:
Galactans are polysaccharides sulfated present in the cell wall of red algae. Carrageenans are galactans well known in the food industry as gelling polysaccharides and for induce inflammatory process in rodents as animal model. The extraction of polysaccharides from A. multifida has been carried out by proteolysis and precipitation in different volumes of acetone, which produced three fractions (F1, F2, and FT). Chemical and physical analyses revealed that these fractions are sulfated galactan predominantly. Results of the antioxidant activity assays showed that all of these fractions have antioxidant activity and that was associated with sulfate content of the analysis of reducing power and total antioxidant capacity. However, these fractions were not effective against lipid peroxidation. The fraction FT presented higher activity on the APTT test at 200 μg (> 240 s). The assessment of the hemolytic activity showed that the FT fraction has the best activity, increasing lyses by the complement system to 42.3% (50 μg) (p< 0,001). The fraction FT showed the best yield, anticoagulant and hemolytic activity between the three fractions and therefore it was choose for the in vivo studies. The Inflammation assessment using the FT fraction (50 mg / kg MB) showed that the cellular migration and the IL-6 production increased 670.1% (p< 0,001) and 531.8% (p< 0,001), respectively. These results confirmed its use as an inflammation inducer in animal model. Cytotoxicity assay results showed that all fractions have toxic effects on 3T3 and HeLa cells after exposition of 48 hours, except when 100 μg for both F1 and FT were used. These results arise the discussion whether these polysaccharides it should be used as additive in foods, cosmetics and medicines.
Resumo:
In the present study, extracts rich-sulfated polysaccharides were obtained from three different species of Dictyotales (a class of brown macroalgae): Canistrocarpus cervicornis, Dictyota mertensii and Dictyopteris delicatula and their anticoagulant and antioxidant activities were evaluated. All extracts showed anticoagulant activity on aPTT assay, but not on PT assay. Extracts also exhibited total antioxidant activity, superoxide radical scavenging capacity and ferric chelating property. The extract from C. cervicornis showed the best results and was choose to have their sulfated polysaccharides fractioned and subsequently analysed. Thus, six fractions (CC-0.3, CC-0.5, CC-0.7, CC-1.0, CC-1.2 and CC-2.0) were obtained by proteolysis followed by sequential acetone precipitation. Agarose gel eletrophoresis stained with blue toluidine, confirmed the presence of sulfated polysaccharides in all fractions. Chemical analyses showed that all fractions presented heterofucans mainly constitued by fucose, galactose, glucuronic acid and sulfate. Any fraction changed the PT. However, all fractions were able to double the aPTT on a dose-dependent manner. CC- 0.3, CC-0.5, CC-0.7 and CC-1.0 needed only 0.100 mg/mL to double the aPTT, result only 1.25 times higher than the Clexane® (0.080 mg/mL), a commercial low molecular heparin. The heterofucans presented appreciable total antioxidant capacity, low capacity on scavenging hydroxyl radical and good efficiency on scavenging superoxide radicals (except CC-1.0). CC-1.2 showed 43.1 % on superoxide radical scavenging. This result was higher than that showed by the same concentration of gallic acid (41.8 %), a known antioxidant. Furthermore, the heterofucans showed excelent activity on ferrous chelating activity (except CC-0.3). CC-0.5, CC-0.7 and CC-1.0 showed the highest activities with 47.0 % of ferrous chelating activity, a result 2.0 times lesser than that exhibited by the same concentration of EDTA. These results clearly indicated the beneficial effects of heterofucans extracted from C. cervicornis as potential anticoagulant and antioxidant agents. However additional steps of purification, structural studies, besides in vivo experiments are needed for these fucans may be used as therapeutic agents
Resumo:
studies using UV as a source of DNA damage. However, even though unrepaired UV-induced DNA damages are related to mutagenesis, cell death and tumorigenesis, they do not explain phenotypes such as neurodegeneration and internal tumors observed in patients with syndromes like Xeroderma Pigmentosum (XP) and Cockayne Syndrome (CS) that are associated with NER deficiency. Recent evidences point to a role of NER in the repair of 8-oxodG, a typical substrate of Base Excision Repair (BER). Since deficiencies in BER result in genomic instability, neurodegenerative diseases and cancer, it was investigated in this research the impact of XPC deficiency on BER functions in human cells. It was analyzed both the expression and the cellular localization of APE1, OGG1 e PARP-1, the mainly BER enzymes, in different NER-deficient human fibroblasts. The endogenous levels of these enzymes are reduced in XPC deficient cells. Surprisingly, XP-C fibroblasts were more resistant to oxidative agents than the other NER deficient fibroblasts, despite presenting the highest of 8-oxodG. Furthermore, subtle changes in the nuclear and mitochondrial localization of APE1 were detected in XP-C fibroblasts. To confirm the impact of XPC deficiency in the regulation of APE1 and OGG1 expression and activity, we constructed a XPC-complemented cell line. Although the XPC complementation was only partial, we found that XPC-complemented cells presented increased levels of OGG1 than XPC-deficient cells. The extracts from XPC-complemented cells also presented an elevated OGG1 enzimatic activity. However, it was not observed changes in APE1 expression and activity in the XPCcomplemented cells. In addition, we found that full-length APE1 (37 kDa) and OGG1- α are in the mitochondria of XPC-deficient fibroblasts and XPC-complemented fibroblasts before and after induction of oxidative stress. On the other hand, the expression of APE1 and PARP-1 are not altered in brain and liver of XPC knockout mice. However, XPC deficiency changed the APE1 localization in hypoccampus and hypothalamus. We also observed a physical interaction between XPC and APE1 proteins in human cells. In conclusion, the data suggest that XPC protein has a role in the regulation of OGG1 expression and activity in human cells and is involved mainly in the regulation of APE1 localization in mice. Aditionally, the response of NER deficient cells under oxidative stress may not be only associated to the NER deficiency per se, but it may include the new functions of NER enzymes in regulation of expression and cell localization of BER proteins
Resumo:
Visceral leishmaniasis (VL) in Brazil is a disease caused by Leishmania infantum chagasi (L.i.chagasi). The clinical evolution post-infection depends on the vertebrate host immune response, which is genetically mediated. This study aimed to evaluate the immune response of individuals living in endemic area for VL in the state of the Rio Grande do Norte, considering individuals with VL under treatment (n = 9), recovered VL <1 year post treatment (n = 10), > 10 years posttreatment (n = 9), uninfected individuals living in endemic areas (n = 7), individuals that lost DTH response (n=6) and asymptomatic individuals for VL (n=9). Peripheral blood cells were evaluated in the presence and absence of soluble Leishmania antigens (SLA) and ex vivo, to determine activation, presence of regulatory cells and memory cells. The Leishmania parasitemia and anti-Leishmania antibodies were determined respectively by qPCR and ELISA. Cells from individuals with VL under treatment showed less cell activation after stimulation with SLA for the markers CD4/CD69, CD8/CD69 and CD8/CD25 compared with VL post treatment treatment (p <0.001). Apparently uninfected individuals have a higher cell activation than symptomatic VL (p <0.001), with the exception of CD8/CD25 marker (p = 0.6662). On the other hand, in the ex-vivo group, significant differences were observed for CD4/CD69, CD8/CD69 and CD8/CD25 between the 4 groups due to increased cell activation present in cells of individuals symptomatic LV (p <0.001). VL cells under treatment, ex vivo, have a lower percentage of memory cells (CD4/CD45RO and CD8/CD45RO) than individuals VL post-treatment or control group (p = <0.01). Likewise, individuals with symptomatic VL have fewer regulatory cells when stimulated by SLA [CD4/CD25 (p = 0.0022) and CD4/FOXP3 (p = 0.0016)] and in the ex-vivo group (p = 0.0017). Finally, DNA isolated from recovered VL contained Leishmania DNA, supporting the hypothesis of non-sterile clinical cure for Leishmania infection. Recovered VL, even 10 years after treatment have high levels of memory cells, which may be due to the presence of stimulation, either by reexposure to Leishmania or non-sterile cure
Resumo:
The species of the genus Marsdenia, Apocynaceae, are widely used in folk medicine of several countries. In Brazil is found several species belonging to this genus. The in vitro antioxidant, anticoagulant and antiproliferative activities were evaluated to aqueous extracts of stalk, leaf and root of Marsdenia megalantha. In the total antioxidant capacity assay (expressed as ascorbic acid equivalents) the stalk extract showed 76.0 mg/g, while leaf and root extracts 141.3 mg/g and 57.0 mg/g, respectively. The stalk and leaf extracts showed chelating activity around 40% at 1.5 mg/mL, while root extract, at the same concentration showed, 17%. Only the leaf extract showed a significant ability in superoxide scavenging (80% at 0.8 mg/mL). Any extract was able in scavenge hydroxyl, as well anticoagulant activity. The antiproliferative activity of the extracts was evaluated against HeLa tumor cell line. The extracts inhibited in a dose-dependent manner the cell growth. However, the leaf extract showed 80% of inhibition at 1.0 mg/mL, while stalk and root extracts inhibited 63% and 30%, respectively. To assess the mechanism of cell death caused by the leaf extract in HeLa, was performed flow cytometry and western blot. The results show that leaf extract induces cell death by apoptosis through an activation caspase-independent pathway. These data indicate that stalk and leaf extracts obtained have potential to be used as antioxidants and anticancer drugs
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
The acquisition of oligosaccharides from chitosan has been the subject of several studies in the pharmaceutical, biochemical, food and medical due to functional properties of these compounds. This study aimed to boost its production of chitooligosaccharides (COS) through the optimization of production and characterization of chitosanolytic enzymes secreted by microorganisms Paenibacillus chitinolyticus and Paenibacillus ehimensis, and evaluating the antioxidant potential of the products obtained. In the process of optimizing the production of chitosanase were employed strategies Fractional Factorial Experimental Design and Central Composite Rotatable Design. The results identified the chitosan, peptone and yeast extract as the components that influenced the production of chitosanase by these microorganisms. With the optimization of the culture media was possible to obtain an increase of approximately 8.1 times (from 0.043 to 0.35 U.mL U.mL-1) and 7.6 times (from 0.08 U.mL-1 to 0.61 U.mL-1) in the enzymatic activity of chitosanase produced by P. chitinolyticus and P. ehimensis respectively. Enzyme complexes showed high stability in temperature ranges between 30º and 55º C and pH between 5.0 and 9.0. Has seen the share of organic solvents, divalent ions and other chemical agents on the activity of these enzymes, demonstrating high stability of these crude complexes and dependence of Mn2+. The COS generated showed the ability of DPPH radical scavenging activity, reaching a maximum rate of scavenging of 61% and 39% when they were produced with enzymes of P. ehimensis and P. chitinolyticus respectively. The use of these enzymes in raw form might facilitate its use for industrial applications
Resumo:
Studies indicate that several components were isolated from medicinal plants, which have antibacterial, antifungal, antitumor and anti-inflammatory properties. Sepsis is characterized by a systemic inflammation which leads to the production of inflammatory mediators exacerbated by excessive activation of inflammatory cells and disseminated intravascular coagulation (DIC), in which the human neutrophil elastase plays an important role in its pathogenesis. Several epidemiological studies suggest that components of plants, especially legumes, can play a beneficial role in reducing the incidence of different cancers. A chymotrypsin inhibitor of Kunitz (Varela, 2010) was purified from seeds of Erythrina velutina (Mulungu) by fractionation with ammonium sulfate, affinity chromatography on Trypsin-Sepharose, Chymotrypsin-Sepharose and ion exchange chromatography on Resource Q 1 ml (GE Healthcare) in system FPLC / AKTA. The inhibitor, called EvCI, had a molecular mass of 17 kDa determined by SDS-PAGE. The purified protein was able to inhibit human neutrophil elastase (HNE), with an IC50 of 3.12 nM. The EvCI was able to inhibit both pathways of HNE release stimulated by PAF and fMLP (75.6% and 65% respectively). The inhibitor also inhibited leukocyte migration in septic mice about 87% and prolonged the time of coagulation and inhibition factor Xa. EvCI showed neither hemolytic activity nor cytotoxicity. EvCI showed a selective antiproliferative effect to HepG2 cell lines with IC50 of 0.5 micrograms per milliliter. These results suggest EvCI as a molecule antagonist of PAF / fMLP and a potential use in fighting inflammation related disorders, disseminated intravascular coagulation (DIC) and cancer
Resumo:
Compounds derived from fungi has been the subject of many studies in order to broaden the knowledge of their bioactive potential. Polysaccharides from Caripia montagnei have been described to possess anti-inflammatory and antioxidant properties. In this study, glucans extracted from Caripia montagnei mushroom were chemically characterized and their effects evaluated at different doses and intervals of treatment. It was also described their action on colonic injury in the model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and its action on cells of the human colon carcinoma (HT-29). Compounds extracted of C. montagnei contain high level of carbohydrates (96%), low content of phenolic compounds (1.5%) and low contamination with proteins (2.5%). The (FT-IR) and (NMR) analysis showed that polysaccharides from this species of mushroom are composed of α- and β-glucans. The colonic damage was evaluated by macroscopic, histological, biochemical and immunologic analyses. The results showed a reduction of colonic lesions in all groups treated with the glucans of Caripia montagnei (GCM). GCM significantly reduced the levels of IL-6 (50 and 75 mg/kg, p < 0.05), a major inflammatory cytokine. Biochemical analyses showed that such glucans acted on reducing levels of alkaline phosphatase (75 mg/kg, p < 0.01), nitric oxide (p < 0.001), and myeloperoxidase (p < 0.001). These results were confirmed microscopically by the reduction of cellular infiltration. The increase of catalase activity suggest a protective effect of GCM on colonic tissue, confirming their anti-inflammatory potential. GCM displayed cytostatic activity against HT-29 cells, causing accumulation of cells in G1 phase, blocking the cycle cell progression. Those glucans also showed ability to modulate the adhesion of HT-29 cells to Matrigel® and reduced the oxidative stress. The antiproliferative activity against HT-29 cells displayed by GCM (p <0.001) can be attributed to its cytostatic activity and induction of apoptosis by GCM
Resumo:
Vitamins A and E are essential nutrients in many biological processes, so that their adequate supply to the neonate is crucial. However, the bioavailability of vitamins may be limited by factors such as maternal nutritional status and the interaction between nutrients. This study aimed to investigate the effect of biochemical nutritional status of retinol and alpha-tocopherol levels in serum and colostrum. The study included 103 healthy puerperal women treated at the reference state maternity hospital (Natal-RN). Colostrum and serum samples were collected fasting in the immediate postpartum period and the analysis of retinol and alpha-tocopherol were determined by high-performance liquid chromatography. Specific cutoff points were adopted to characterize the biochemical status of vitamins A and E. For the total group of lactanting women the average concentration of retinol in serum (1.49 ± 0.4 μmol/L-1) and colostrum (2.18 ± 0.8 μmol/L-1), as well as alpha-tocopherol in serum (26.4 ± 8.0 μmol/L-1) and colostrum (26.1 ± 12.8 μmol/L-1), indicated adequate biochemical state. However, when evaluating the individual, was found a high prevalence of deficient serum (15%) and colostrum retinol (50%), and also alphatocopherol in serum (16%) and colostrum (61%). In women with serum retinol ≥ 1.05 μmol/L-1, found an inverse correlation between serum retinol and alpha-tocopherol in colostrum (p = 0.008, r = -0.28). This association was not observed in women with serum retinol <1.05 μmol/L-1. This situation demonstrates for the first time in humans that high physiological levels of serum retinol, without supplementation, can negatively influence the transfer of alpha-tocopherol in breast milk. Although the diagnosis of satisfactory nutritional status lactanting women showed high risk of subclinical deficiency of vitamins A and E from measurements made in the colostrum
Resumo:
Fucan is a term used to denominate L-fucose rich sulfated polysaccharides. The fucans have been studied due their pharmacological activities like antithrombotic, antiproliferative and antioxidant. We have extracted three fucan fractions from the brown seaweed Spatoglossum schröederi. These fucans were denominated Fuc B 1, Fuc B 1.5 and Fuc B 2. The chemical analyzes show that the fucans have very similar composition as demonstrated by agarose electrophoresis gel, sugar and sulfate content. The antiproliferative effect was determined by MTT and BrdU methodologies in CHO cells. The inhibition of proliferation effect of the three fractions was about 40%. Therefore this we proceed just with the Fuc B 2 due the higher yield. There is no apoptosis indication using the anexin V/propidium iodide test. We found a cell cycle phase G1 arrest. The western blotting show that the PKC; pFAK; pERK 1/2 are activated when the cells were treated with fucans. The treatement with inhibitor of MAPK PD98059 extinguished the fucan effect. These results indicates that fucan act by the ERK pathway inducing the cell death.
Resumo:
Cancer is a term used to represent a set of more than 100 diseases, including malignant tumors from different locations. The malignancies are the second leading cause of death in the population, representing approximately 17% of deaths of known cause. Strategies that induce differentiation have had limited success in the treatment of established cancers. In this work, a lectin purified from the marine sponge Cinachyrella apion (CaL) was evaluated due to its hemolytic, cytotoxic and antiproliferative properties, besides the ability to induce cell death via apoptosis in tumor cells. The antiproliferative activity of CaL was tested against cell lines, with the highest inhibition of tumor growth for HeLa, reducing cell growth at a dose dependent manner, with a concentration of 10 μg/mL. The hemolytic activity and toxicity against peripheral blood cells were tested using the concentration of IC50 for both trials and twice the IC50 for analysis in flow cytometry, indicating that CaL is not toxic to these cells. To assess the mechanism of cell death caused by CaL in HeLa cells, we performed flow cytometry and western blotting. The results showed the lectin probably induces cell death by apoptosis activation by pro-apoptotic protein Bax, promoting mitochondrial membrane permeabilization, cell cycle arrest in S phase, with accumulation of cells of approximately 57% in this phase, and acting as both dependent and/or independent of caspases pathway. These results suggest that CaL has the potential to be used as drug treatment against cancer.
Resumo:
Chitinases are enzymes involved in degradation of chitin and are present in a range of organisms, including those that do not contain chitin, such as bacteria, viruses, plants and animals, and play important physiological and ecological roles. Chitin is hydrolyzed by a chitinolytic system classified as: endo-chitinases, exo-chitinases and N-acetyl-b-D-glucosaminidases. In this study a Litochitinase1 extracted from the cephalotorax of the shrimp Litopenaeus Schmitt was purified 987.32 times using ionexchange chromatography DEAE-Biogel and molecular exclusion Sephacryl S-200. These enzyme presented a molecular mass of about 28.5 kDa. The results, after kinetic assay with the Litochitinase1 using as substrate p-nitrophenyl-N-acetyl-b-Dglucosaminideo, showed apparent Km of 0.51 mM, optimal activity at pH ranging from 5.0 to 6.0, optimum temperature at 55°C and stability when pre-incubated at temperatures of 25, 37, 45, 50 and 55°C. The enzyme showed a range of stability at pH 4.0 to 5.5. HgCl2 inhibited Litochitinase1 while MgCl2 enhances its activity. Antimicrobial tests showed that Litochitinase1 present activity against gram-negative bacterium Escherichia coli in the 800 μg/mL concentration. The larvicidal activity against Aedes aegypti was investigated using crude extracts, F-III (50-80%) and Litochitinase1 at 24 and 48 hours. The results showed larvicidal activity in all these samples with EC50 values of 6.59 mg/mL for crude extract, 5.36 mg/mL for F-III and 0.71 mg/mL for Litochitinase1 at 24 hours and 3.22 and 0.49 mg/mL for the F-III and Litochitinase1 at 48 hours, respectively. Other experiments confirmed the presence of chitin in the midgut of Aedes aegypti larvae, which may be suffering the action of Litochitinase1 killing the larvae, but also the absence of contaminating proteins as serine proteinase inhibitors and lectins in the crude extract, F-III and Litochitinase1, indicating that the death of the larvae is by action of the Litochitinase1. We also observed that the enzymes extracted from intestinal homogenate of the larvae no have activity on Litochitinase1. These results indicate that the enzyme can be used as an alternative to control of infections caused by Escherichia coli and reducing the infestation of the mosquito vector of dengue.
Resumo:
The Brazil is the third largest producer of cashew nuts in the world. Despite the social and economic importance of the cashew nut, its production is still carried out artisanally. One of the main problems encountered in the cashew production chain are the conditions under which the roasting of the nut occurs to obtain the kernel from the shell. In the present study was conducted a biomonitoring of the genotoxic and cytotoxicity effects associated with the elements from the cashew nut roasting in João Câmara - RN, semi-arid region of Brazil. To assess the genotoxic was used the bioassay of micronucleus (MN) in Tradescantia pallida. In addition, it was performed a comparative between the Tradescantia pallida and KU-20 and other biomarkers of DNA damage, such as the nucleoplasmic bridges (NBP) and nuclear fragments (NF) were quantified. The levels of particulate matter (PM1.0, PM2.5, PM10) and black carbon (BC) were also measured and the inorganic chemical composition of the PM2.5 collected was determined using X-ray fluorescence spectrometry analysis and the assessment of the cytotoxicity by MTT assay and exclusion method by trypan blue. . For this purpose, were chosen: the Amarelão community where the roasting occurs and the Santa Luzia farm an area without influence of this process. The mean value of PM2.5 (Jan 2124.2 μg/m3; May 1022.2 μg/m3; Sep 1291.9 μg/m3) and BC (Jan 363.6 μg/m3; May 70.0 μg/m3; Sep 69.4 μg/m3) as well as the concentration of the elements Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br and Pb obtained at Amarelão was significantly higher than at Santa Luzia farm. The genotoxicity tests with T. pallida indicated a significant increase in the number of MN, NBP and NF and it was found a negative correlation between the frequency of these biomarkers and the rainfall. The concentrations of 200 μg/mL and 400 μg/mL of PM2.5 were cytotoxic to MRC-5 cells. All together, the results indicated genotoxicity and citotoxicity for the community of Amarelão, and the high rates of PM2.5 considered a potential contributor to this effect, mainly by the high presence of transition metals, especially Fe, Ni, Cu, Cr and Zn, these elements have the potential to cause DNA damage. Other nuclear alterations, such as the NPBs and NFs may be used as effective biomarkers of DNA damage in tetrads of Tradescantia pallida. The results of this study enabled the identification of a serious occupational problem. Accordingly, preventative measures and better practices should be adopted to improve both the activity and the quality of life of the population. These measures are of fundamental importance for the sustainable development of this activity.
Resumo:
In the last years, heparin has become target of many studies related to inflammation due its ability of biding to proteins involved on immune response. Recently, it was demonstrated, at our laboratory, using a thIoglycollate-induced peritonitis model, heparin s capacity of reduce cellular influx into the peritoneal cavity, 3 hours after the inflammatory stimulus. Once neutrophilic infiltration is highest around 8 hours after the inflammatory stimulus, at the present work, using the same peritonitis model, it was assessed heparin s ability of keeping the interference on leukocyte infiltration, 8 hours after inflammation induction. Moreover, using cellular differential count, it was evaluated how the cellular populations involved in the inflammatory process would be affected by the treatment. Eight hours after the inflammatory stimulus, only heparin dosage of 1 μg/Kg was able to reduce the cellular influx to peritoneum, 62.8% of reduction when compared to positive control (p < 0.001). Furthermore, heparin dosage of 15 μg/Kg presented a pro-inflammatory effect in whole blood verified by the increase of 60.9% (p < 0.001) and 117.8% (p < 0.001) on neutrophils and monocytes proportion, respectively, when compared to positive control. In addition, this dosage also presented a neutrophilic proportion on peritoneal fluid 27.3% higher than positive control (p < 0.05). This duality between anti- and pro-inflammatory effects at different times corroborates studies that attribute a pleiotropic immunomodulator role to heparin.