925 resultados para CNPQ::CIENCIAS EXATAS E DA TERRA::PROBABILIDADE E ESTATISTICA::ESTATISTICA


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the objective in study was the development of a biossensor potencyometric for urea detection, starting from the extracted urease of soy grains. Initially, was made a chemometrics study, through a planning factorial 24, objectified to find great conditions for the extraction of the urease without its properties were affected. Starting from this study, the best conditions were determined for the obtaining of rich extracts in urease, allowing the biossensors making with good characteristics. These were made using a platinum electrode as transducer with the dispersed urease in chitosan head office and reticulated in glutaraldehyde vapor. The biossensors obtained presented a limit of urea detection the same to 0,33 mM and lineal strip between 0,33 and 3 mM of the substratum. The time of answer was considered loud, mainly, in low concentrations of the substratum, where it was taken about 5 minutes by analysis. For high concentrations that time was reduced for not more than one minute. The time of life was limited by the adherence of the enzymatic membrane to the transducer, but it was possible to maintain the biossensor with operation for one month with about 50 accomplished measures. Application of the biossensor for analyses of fertilizers to the urea base presented excellent result for a sample with few interfering, but it was different when the used fertilizer was originating from of a complex sample. Even so the label was not expressed the text of nitrogen it was totally coming of the urea. An evaluation of the kinetic parameters of the catalytic reaction of the biossensor showed coherence with the results exposed in the literature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metalic oxides have been studies due to differents applications as materials semiconductor in solar cells, catalysts, full cells and, resistors. Titanium dioxide (TiO2) has a high electric conductivity due to oxygen vacancies. The Ce(SO4)2.2H2O doped samples TiO2 and TiO2 pure was obtained sol-gel process, and characterized by X-ray diffractometry,thermal analysis, and impedance spectroscopy. The X-ray diffraction patterns for TiO2 pure samples shows at 700°C anatase phase is absent, and only the diffraction peaks of rutile phase are observed. However, the cerium doped samples only at 900°C rutile in the phase present with peaks of cerium dioxide (CeO2). The thermal analysis of the TiO2 pure and small concentration cerium doped samples show two steps weight loss corresponding to water of hydration and chemisorbed. To larger concentration cerium doped samples were observed two steps weight loss in the transformation of the doped cerium possible intermediate species and SO3. Finally, two steps weight loss the end products CeO2 and SO3 are formed. Analyse electric properties at different temperatures and concentration cerium doped samples have been investigated by impedance spectroscopy. It was observed that titanium, can be substituted by cerium, changing its electric properties, and increased thermal stability of TiO2 anatase structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perovskite-like ceramic materials present the general formula ABO3, where A is a rare earth element or an alkaline metal element, and B is a transition metal. These materials are strong candidates to assume the position of cathode in Solid Oxide Fuel Cells (SOFC), because they present thermal stability at elevated temperatures and interesting chemical and physical properties, such as superconductivity, dieletricity, magnetic resistivity, piezoelectricity, catalytic activity and electrocatalytic and optical properties. In this work the cathodes of Solid Oxide Fuel Cells with the perovskite structure of La1-xSrxMnO3 (x = 0.15, 0.22, 0.30) and the electrolyte composed of zirconia-stabilized-yttria were synthesized by the Pechini method. The obtained resins were thermal treatment at 300 ºC for 2h and the obtained precursors were characterized by thermal analysis by DTA and TG / DTG. The powder precursors were calcined at temperatures from 450 to 1350ºC and were analyzed using XRD, FTIR, laser granulometry, XRF, surface area measurement by BET and SEM methods. The pellets were sintered from the powder to the study of bulk density and thermal expansion

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latices based on acrylic acid and ethyl methacrylate, crosslinked with 1,6‐propoxylate‐hexanodiol diacrylate were synthesized via emulsion polymerization with different monomeric compositions. The resultant latices were thickened with different NaOH/(acrylic acid) molar ratios and were characterized by titrimetry, zeta potential measurements, turbidimetry, and capillary viscometry. Intrinsic viscosity was determined for an uncrosslinked copolymer, using toluene as solvent. All the latices were coagulated with NaCl and washed with water at 60°C analyzed by FTIR spectrophotometry, in order to characterize functional groups from the copolymer and crosslinking agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan derivatives were prepared by reductive alkylation using glutaraldehyde and 3-amino-1-propanol. The reducing agent used was the sodium borohydride. Tests of solubility, stability and viscosity were performed in order to evaluate these parameters effects in the reaction conditions (molar ratio of the reactants and presence of nitrogen in the reaction system). The molecular structure of commercial chitosan was determined by infrared (IR) and hydrogen nuclear magnetic resonance spectroscopy (1H NMR). The intrinsic viscosity and average molecular weight of the chitosan were determined by viscosimetry in 0.3 M acetic acid aqueous solution 0.2 M sodium acetate at 25 ºC. The derivatives of chitosan soluble in aqueous acidic medium were characterized by 1H NMR. The rheological behavior of the chitosan and of the derivative of chitosan (sample QV), which presented the largest viscosity, were studied as a function of polymer concentration, temperature and ionic strength of the medium. The results of characterization of the commercial chitosan (the degree of deacetylation obtained equal 78.45 %) used in this work confirmed a sample of low molar weight (Mv = 3.57 x 104 g/mol) and low viscosity (intrinsic viscosity = 213.56 mL/g). The chemical modification of the chitosan resulted in derivatives with thickening action. The spectra of 1H NMR of the soluble derivatives in acid aqueous medium suggested the presence of hydrophobic groups grafted into chitosan in function of the chemical modification. The solubility of the derivatives of chitosan in 0.25 M acetic acid aqueous solution decreased with increase of the molar ratio of the glutaraldehyde and 3-amino-1-propanol in relation to the chitosan. The presence of nitrogen and larger amount of reducing agent in reaction system contributed to the increase of the solubility, the stability and the viscosity of the systems. The viscosity of the polymeric suspensions in function of the shear rate increased significantly with polymer concentration, suggesting the formation of strong intermolecular associations. The chitosan presented pseudoplastic behavior with the increase in polymer concentration at a low shear rate. The derivative QV presented pseudoplastic behavior at all concentrations used and in a large range of shear rate. The viscosity of chitosan in solution decreased with an increase of the temperature and with the presence of salt. However, there was an increase of the viscosity of the chitosan solution at higher temperature (65 ºC) and ionic strength of the medium which were promoted by hydrophobic associating of the acetamide groups. The solutions of the chitosan derivatives (sample QV) were significantly more viscous than chitosan solution and showed higher thermal stability in the presence of salt as a function of the hydrophobic groups grafted into chitosan backbone

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this work was the preparation of polyols from reactions between castor oil and dietanolamine to increase the hydroxyl content and the network degree in the products to application in electronic devices. The polyols and the mixtures obtained were characterized by nuclear magnetic ressonance. Castor oil (CO) is a natural triglyceride - based polyol possessing hydroxyl groups, which allow several reactions that produce many different products. Among them are the polyurethanes (PU), which have been considered an ideal product for the covering of electricelectronic circuits, due to their excellent electrical, shock-absorbing, solvents resistance and hydrolytic stability properties. About 90% of the fatty acids present in the castor oil are ricinoleic acid (12-hydroxyoleic acid), while the remaining 10% correspond to non-hydroxylated fatty acids, mainly linoleic and oleic acids. The chemical analysis of castor oil indicates a hydroxyl number of 2.7. In this work, a polyol was obtained by the reaction of the CO with diethanolamine (DEA), in order to elevate the hydroxyl value from 160 to 230 or to 280 mgKOH/g, and characterized by nuclear magnetic resonance (NMR) 1H and 13C (Mercury 200). The polyadition of the resulting polyol with isophorone diisocianate (IPDI) was carried out at 60°C, and the reaction kinetics was followed by rheological measurements in a Haake RS150 rheometer. The electrical properties were determined in a HP LCR Meter 4262A, at 1.0 Hz and 10.0 KHz. The chemical analysis showed that the polyols obtained presented hydroxyl number from 230 to 280 mgKOH/g. The polyadition reaction with IPDI produced polyurethane resins with the following properties: hardness in the range from 45 shore A to 65 shore D (ASTM D2240); a dielectric constant of 3.0, at 25°C (ASTM D150). Those results indicate that the obtained resins present compatible properties to the similar products of fossil origin, which are used nowadays for covering electric-electronic circuits. Therefore, the PUs from castor oil can be considered as alternative materials of renewable source, free from the highly harmful petroleum - derived solvents

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymes have been widely used in biosynthesis/transformation of organic compounds in substitution the classic synthetic methods. This work is the first writing in literature of enzymatic synthesis for attainment the biossurfactants, the use glucose sucrose, ricinoleic acid e castor oil as substratum, and as biocatalyst, used immobilized lipase Thermomyces lanuginose, Rhizomucor miehei and the Candida antarctica lipase B; alkaline protease and neutral protease from Bacillus subtillis and yeast Saccharomyces cerevisiaeI. The analysis of HPLC (high performance liquid chromatography) showed that highest conversions were reached of used the alkaline protease from Bacillus subtillis. Laboratory tests, to evaluate the applicability, indicated that the produced biosurfactantes had good stability in presence of salts (NaCl) and temperature (55 e 25°C), they are effective in the reduction of the superficial tension and contac angle, but they have little foaming capacity, when compared with traditional detergents. These results suggest that the prepared surfactants have potential application as wetting agent and perforation fluid stabilizer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to environmental restrictions around the world, clean catalytic technology are of fundamental importance in the petrochemical industry and refineries. Creating the face of this a great interest in replacing the liquid acids for solid acids, so as molecular sieves have been extensively studied in reactions involving the acid catalysis to produce chemical substances with a high potential of quality. Being the activity of the catalysts involved in the reaction attributed to the acid character of them involved for the Lewis and Brönsted acid sites. Based on this context, this study aimed to prepare catalysts acids using a molecular sieve silicoalumino-phosphate (SAPO-11) synthesized in hidrotermical conditions and sulphated with sulphuric acid at different concentrations, using to it the method of controlled impregnating. The samples resulting from this process were characterized by x-ray difratometry (DRX), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), thermal analysis (TG-DTG) and determination of total acidity (by n-butilamin adsorption). The results show that the synthesis method used was efficient in the formation of AEL structure of SAPO-11 and when being incorporated the sulfate groups in this structure the acidity of the material was increased, pointing out that to very high concentrations of acid there is a trend of decrease the main peaks that form the structure. Finally they were tested catalytictly by the reaction model of conversion of m-xylene which showed favorable results of conversion for this catalyst, showing to be more selective of cracking products than isomerization, as expected, in order that for the o-xylene selectivity there was no positive change when to sulfate a sample of SAPO-11, while for light gases of C1-C4 this selectivity was remarkably observed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterogeneous catalysts such as aluminophosphate and silicoaluminophosphate, molecular sieves with AEL of ALPO-11 and SAPO-11, were synthesized by the hydrothermal method with the following molar composition: 2.9 Al +3.2 P + 3.5 DIPA +32.5 H20 (ALPO-11); 2.9 Al +3.2 P + 0.5 Si + 3.5 DIPA +32.5 H20 (SAPO-11) starting from silica (only in the SAPO-11), pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 170ºC for a period of 48 hours under autogeneous pressure. The obtained materials were washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), thermo gravimetric differential thermal analysis (TG/DTA) and nitrogen adsorption (BET). The acidic properties were determined using adsorption of n-butylamine followed by programmed thermodessorption. This method revealed that ALPO-11 has weaker acid sites due to structural defects, while SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by the cracking of the n-hexane in a fixed bed continuous flow microrreator coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the organic template

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Films of chitosan with trivalent lanthanides ions Eu3+ and Tb3+ were respectively prepared in the ratio of 3:1 m/m (chitosan: lanthanide) and 6:1 m/m (chitosan: lanthanide). There were no formations of films in a ratio of 1:1 m/m (chitosan: lanthanides). The films of chitosan with the Tb3+ ion have the same transparent appearance than the pure chitosan films. The film of chitosan with Eu3+ ion has a muddy appearance. These films present good resistance to tear. The appearance of the compounds prepared in ratio 1:1m/m is a white powder. The films and compounds of chitosan were characterized by Elementary Analysis (CHN), Thermal Analysis (TG/DTG) and Spectroscopy of Luminescence. The CHN analysis was made only for compounds prepared in ratio 1:1m/m, suggesting that these compounds possess the formula QUILn.6H2O, where QUI = Chitosan and Ln = Lanthanide. The results of the curves TG/DTG indicated that there are strong interactions between Eu3+ or Tb3+ and chitosan, causing a lesser lost of mass in the films. The luminescence analysis showed that the films of chitosan with the ions Eu3+ and Tb3+ present emissions in the region of the visible one, with bands of the chitosan and of the Eu3+ ion. The luminescence analysis of the compounds of chitosan with the Eu3+ and Tb3+ ions suggest that the chitosan does not transfer into energy to the ions lanthanides, however the chemical neighborhood around of the ion lanthanides breaks the selection rules and, conseently the 4f-4f transitions of the lanthanide ions are observed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Latexes based on acrylic acid, acrylamide, ethyl methacrylate, and ethyl acrylate were synthesized via emulsion polymerization with different monomer compositions. The resultant latices were thickened with different molar ratios of NaOH to acrylic acid and were analyzed in terms of acid‐basis titrimetry, turbidimetry, rheology, and tensiometry. Titrimetry, turbidimetry, and rheometry were used to analyze factors such as carboxyl group availability and particle solubilization, tensiometry monitoring the influence of carboxyl neutralization on polymer‐surfactant interactions. For the acrylic acid content used in this work (20 wt%), the results indicated that as carboxyl groups distribution became more homogeneous, the process of latex thickening became more effective

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An interesting development in surfactants science and technology is their application as corrosion inhibitors, since they act as protective films over anodic and cathodic surfaces. This work aims to investigate the efficiency of saponified coconut oil (SCO) as corrosion inhibitor and of microemulsified system (SCO + butanol + kerosene oil + distilled water), in saline medium, using an adapted instrumented cell, via techniques involving linear polarization resistance (LPR) and mass loss coupons (MLC). For this, curves of efficiency versus SCO concentration (ranging between 0 and 75 ppm) have been constructed. According to the obtained results, the following efficiency levels were reached with OCS: 98% at a 75 ppm concentration via the LPR method and 95% at 75 ppm via the MLC method. The microemulsified system, for a concentration of 15 ppm of SCO, obtained maximum inhibition of 97% (LPR) and 93% (MLC). These data indicate that it is possible to optimize the use of SCO in similar applications. Previous works have demonstrated that maximal efficiencies below 90% are attained, typically 65% as free molecules and 77% in microemulsified medium, via the LPR method in a different type of cell. Therefore, it can be concluded that the adapted instrumented cell (in those used methods) showed to be an important tool in this kind of study and the SCO was shown effective in the inhibition of the metal

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Were synthesized different ferrites NixZn1-xFe2O4 (0,4 ≤ x ≤ 0,6) compositions by using citrate precursor method. Initially, the precursors citrates of iron, nickel and zinc were mixed and homogenized. The stoichiometric compositions were calcined at 350°C without atmosphere control and the calcined powders were pressed in pellets and toroids. The pressed material was sintered from 1100º up to 1200ºC in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, SEM and vibrating sample magnetometer (VSM). All sintered samples were characterized using XRD, SEM, VSM and measurements of magnetic permeability and loss factor were obtained. It was formed pure ferromagnetic phase at all used temperatures. The Rietveld analyses allowed to calculate the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (12-20 nm) to the calcined powder. By SEM, the sintered samples shows grains sizes from 1 to 10 μm. Sintered densities (ρ) were measured by the Archimedes method and with increasing Zn content, the bulk density decrease. The better magnetization results (105-110 emu/g) were obtained for x=0,6 at all sintering temperatures. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The sintered toroids presents relative magnetic permeability (μr) from 7 to 32 and loss factor (tanδ) of about 1. The frequency response of toroids range from 0,3 kHz to 0,2 GHz. The composition x=0,5 presents both greater μr and tanδ values and x=0,6 the most broad range of frequency response. Various microstructural factors show influence on the behavior of μr and tanδ, such as: grain size, porosity across grain boundary and inside the grain, grain boundary content and domain walls movement during the process of magnetization at high frequency studies (0,3kKz 0,2 GHz)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was synthesized different Ni1-xMgxFe2O4 (0,2 ≤ x ≤ 0,7) compositions by use of citrate precursor method. Initially, the precursory citrates of iron, nickel and magnesium were mixed and homogenized. The stoichiometric compositions were calcined from 350°C to 1200°C at ambient atmosphere or in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, magnetic measures and reflectivity using the wave guide method. I was observed pure magnetic phase formation between 350°C and 500°C, with formation of ferrite and hematite after 600°C at ambient atmosphere. The calcined powder at argon atmosphere formed pure ferromagnetic phase at 1100°C and 1200°C. The Rietveld analyses calculated the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (11-66 nm), that at 900°C/3h presents micrometric sizes (0,45 - 0,70 Om). The better magnetization results were 54 Am2/Kg for x= 0,2 composition, calcined at 350°C/3h and 30 min, and 55,6 Am2/Kg for x= 0,2 1200°C, calcined in argon. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The materials presented absorption less or equal the 50 % in ranges specific frequency. As for the 2,0 and 3,0 thickness (in 11,0 - 11,8 GHz), the reflectivity of the x= 0,3, 0,5 and 0,4 compositions, all calcined at 900°C/3h showed agreement with MS and O. Various factors contribute for the final radiation absortion effect, such as, the particle size, the magnetization and the polymer characteristics in the MARE composition. The samples that presented better magnetization does not obtaining high radiation absorption. It is not clear the interrelaction between the magnetization and the radiation absorption in the strip of frequencies studied (8,2 - 12,4 GHz)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biodiesel is defined as the mono-alkyl ester derived from long-chain fatty acids, from renewable sources such as vegetable oils or animal fat, whose use is associated with the replacement of fossil fuels in diesel engine cycle. The biodiesel is susceptible to oxidation when exposed to air and this process of oxidation affects the quality of fuel, mainly due to long periods of storage. Because of this, the oxidation stability has been the focus of numerous researches since it directly affects the producers, distributors and users of fuel. One of the possibilities to increase the resistance of biodiesel is the autoxidation treatment with inhibitors of oxidation. The antioxidants can be used as potential inhibitors of the effects of oxidation on the kinematic viscosity and the index of acidity of biodiesel, thereby increasing oxidative stability. This work aims to examine the efficiency of antioxidants, α-tocopherol and butylated hydroxy-toluene (BHT), added the biodiesel content of remembrance through Pressurized-Differential Scanning Calorimetry (P-DSC), Thermogravimetry (TG) and Petrology. The results showed that the use of antioxidant BHT, at the concentration of 2000ppm, increased resistance to oxidation of the biodiesel and oxidative induction time (OIT), which is a better result as antioxidant than the α-tocopherol. With the thermogravimetric analysis, it was observed that the biodiesel presented an initial decomposition temperature of lower tendency than that of oil, demonstrating to be more volatile, bearing great similarity to the diesel and being characterized as an alternative fuel. The rheological analysis indicated that each sample of biodiesel behaved as a Newtonian fluid