548 resultados para Análise de Acesso


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It s presented a solar collector to be used in a system for heating bath water, whose main characteristic is its low cost. The collector consists of five plates of PVC with 10 mm thick, 200 mm in width and 1400mm in length, with an area equal to 1.4 square meters. The plates were connected in parallel to the ends of PVC tubes of  40 mm and 32 mm. The plates were coated on one side with aluminum sheets of soft drinks and beers cans open. The system worked on a thermosiphon and was tested in two configurations: the plates uncoated and coated with aluminum material, to determine the influence of material on the efficiency of the collector. For both configurations was used EPS plates below the surface to minimize heat losses from the botton. The thermal reservoir of the heating system is, also, alternative and low cost, since it was constructed from a polyethylene tank for storing water, with volume of 150 end 200 liters. It will be presented the thermal efficiency, heat loss, water temperature of the thermal reservoir at the end of the process and simulation of baths for a house with four residents. The will be demonstrated thermal, economic and material viability of the proposed collector, whose main innovation is the use of recyclables materials, cans of beer and soft drinks, to increase the temperature of the absorber plate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ceramics with porous cellular structure, called ceramic foams, have a potential use in several applications, such as: thermal insulation, catalyst supports, filters, and others. Among these techniques to obtain porous ceramics the replication method is an important process. This method consists of impregnation of a sponge (usually polymer) with ceramic slurry, followed by a heat treatment, which will happen the decomposition of organic material and sintering the ceramic material, resulting in a ceramic structure which is a replica of impregnated sponge. Knowledge of the mechanical properties of these ceramics is important for these materials can be used commercially. Gibson and Ashby developed a mathematical model to describe the mechanical behavior of cellular solids. This model wasn´t for describing the ceramics behavior produced by the replica method, because it doesn´t consider the defects from this type of processing. In this study were researched mechanical behavior of porous alumina ceramics obtained by the replica method and proposed modifications to the model of Gibson and Ashby to accommodate this material. The polymer sponge used in processing was characterized by thermogravimetric analysis and scanning electron microscopy. The materials obtained after sintering were characterized by mechanical strength tests on 4-point bending and compression, density and porosity and by scanning electron microscopy. From these results it was evaluated the mechanical strength behavior compared to Gibson and Ashby model for solid cellular structure and was proposed a correction of this model through a factor related to struts integrity degree, which consider fissures present in the structure of these materials besides defects geometry within the struts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An alternative box-type solar cooker built starting from the scrap of a tire and a scrap of old office chair is presented, which principles functions are the effect greenhouse and the concentration. The tire served as structure for making of is the baking enclosure where the absorber (roasting pan 20x30cm) of the solar is located, being re-covered for a glass blade for the generation of the greenhouse effect isolated lateral and having deep its and for a composite the plaster base and EPS. Segments of plain mirrors had been placed in the laterals of the oven/cook for the concentration of the radiation and a reflecting parable was introduced in the baking enclosure for the exploitation of the incident reflected radiation inside of the oven/cook. The oven/cook is mobile to allow one better aiming of exactly in relation to the apparent movement of the sun. The thermal economic and of materials viabilities of the stove/cook in study will be demonstrate. The average internal temperature of the absorber was around 152,3°C and the internal temperature around 110°C. Will demonstrate that toits low cost and good thermal performance, represents basic characteristics for the viability of large use of such archetype, mainly for cooking the decreases and averages temperatures. One will reveal that the archetype in study is competitive with the box-type solar cooker conceived in the whole world

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It presents a solar collector to be used in a system for heating water for bathing, whose main characteristics are low cost and easy manufacturing and assembly. The system operates under natural convection or thermosiphon. The absorbing surface of the collector is formed by twelve PVC pipes of 25 mm outside diameter connected in parallel via connections in T of the same material. The tubes were covered with absorbing fins made with recycled aluminum cans. We studied eight settings between absorber plate, thermal insulating EPS boards and thermal reservoirs 150 and 200 liters. It was determined the most efficient configuration for the correct purpose. We evaluated thermal parameters that proved the viability of the heating system studied

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, the designs of equipment takes into account the effects and processes of deterioration it will undergo and arrives at an approximate useful life. However, changes in operational processes and parameters, the action of external agents, the kind of maintenance conducted, the means of monitoring, and natural and accidental occurrences completely modify the desired performance of the equipment. The discontinuities that occur in anisotropic materials often and due to different factors evolve from being subcritical to critical acquiring the status of defect and compromising the physical integrity of the equipment. Increasingly sophisticated technological means of detection, monitoring and assessment of these discontinuities are required to respond ever more rapidly to the requirements of industry. This paper therefore presents a VPS (Virtual Pipe System) computational tool which uses the results of ultrasonic tests on equipment, plotting the discontinuities found in models created in the CAD and CAE systems, and then simulates the behavior of these defects in the structure to give an instantaneous view of the final behavior. This paper also presents an alternative method of conventional ultrasonic testing which correlates the integrity of an overlay (carbon steel and stainless steel attached by welding) and the reflection of ultrasonic waves coming from the interface between the two metals, thus making it possible to identify cracks in the casing and a shift of the overlay

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The technical and economic viability of solar heating for swimming pools is unquestionable, besides there it replaces the high costs and environmental impacts of conventional supply of energy, and it improves an optimization in the pool heating uses. This work applies the principles of the greenhouse effect: advanced thermodynamics, heat retention and equalization of temperature, to optimize the solar heating equipment, reducing the area required by collectors as much as 40% (still estimated value) for commercial collectors, with minor architectural and aesthetic impacts on the environment. It features a solar heating alternative in pools, whose main characteristics: low cost, simplicity in manufacturing and assembly and a faster heating. The system consists of two collectors spiral hoses made of polyethylene with a hundred meters each, and working on a forced flow, with only one pass of the working fluid inside the coils, and is used to pump itself treatment of pool water to obtain the desired flow. One of the collectors will be exposed to direct solar radiation, and the other will be covered by a glass slide and closed laterally, so providing the greenhouse effect. The equipment will be installed in parallel and simultaneously exposed to the sun in order to obtain comparative data on their effectiveness. Will be presented results of thermal tests for this the two cases, with and without transparent cover. Will be demonstrated, by comparison, the thermal, economic and material feasibility of these systems for heating swimming pools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We studied the feasibility of using a system of Solar Water Heating (SAS) with low cost, for three configurations. In configurations I and II have the collector grid absorber composed of six PVC tubes placed in parallel on the tile cement. In configuration II, the PVC tubes were transparent cover made of plastic bottles. Configuration III uses a collector composed of 12 black HDPE pipes, supported on four cement tiles 2.44 m x 0.50 m, two by two overlapping and interspersed with a filling of glass wool, comprising an area exposed to the global radiation incident of 2.44 m2, with the top two tiles painted matte black. In this configuration, the HDPE pipes replace conventional PVC pipes painted black. The total cost of SAS for configuration III, the most economical, was around $ 150.00. For the configurations tested the system of operation was thermosyphon collector. The study showed that the proposed systems have good thermal efficiency, are easy to install and handle and have low cost compared to conventional.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper aims to present the feasibility of using a composite using discarded material from the cultivation of banana tree (pseudostem), which is fibrillated together with synthetic resin replacing glass fiber to be used in structural elements that do not demand large mechanical stress such as reservoirs, troughs, domes, sewage pipes etc.. For this, there were studies about the mechanical properties of a composite made with polyester resin and fiber of banana tree (Musa sp, musac), in which the splints were removed from the pseudostem, being made fibrillation by hand, with the aid of a brush steel, followed by natural drying. After treatment for cleaning and removal of wax, the fiber was cut into pieces of approximately 60 mm to 100 mm, for, together with synthetic resin, make cards of a features fiber composite with random orientation relative to the weight of the resin. We used three different percentages of fiber (3%, 6% and 9%), in order to make a comparative study between them and what would be the one with the best performance. Were manufactured specimens of each material and then subjected to uniaxial tensile tests, three point bending, moisture absorption and thermal characteristics. The results show that, in general, the use of banana tree fiber is feasible simply by an improvement in the production process (machining of the procedure) and greater care in the manufacture of parts

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The competitiveness of the trade generated by the higher availability of products with lower quality and cost promoted a new reality of industrial production with small clearances. Track deviations at the production are not discarded, uncertainties can statistically occur. The world consumer and the Brazilian one are supported by the consumer protection code, in lawsuits against the products poor quality. An automobile is composed of various systems and thousands of constituent parts, increasing the likelihood of failure. The dynamic and security systems are critical in relation to the consequences of possible failures. The investigation of the failure gives us the possibility of learning and contributing to various improvements. Our main purpose in this work is to develop a systematic, specific methodology by investigating the root cause of the flaw occurred on an axle end of the front suspension of an automobile, and to perform comparative data analyses between the fractured part and the project information. Our research was based on a flaw generated in an automotive suspension system involved in a mechanical judicial cause, resulting in property and personal damages. In the investigations concerning the analysis of mechanical flaws, knowledge on materials engineering plays a crucial role in the process, since it enables applying techniques for characterizing materials, relating the technical attributes required from a respective part with its structure of manufacturing material, thus providing a greater scientific contribution to the work. The specific methodology developed follows its own flowchart. In the early phase, the data in the records and information on the involved ones were collected. The following laboratory analyses were performed: macrography of the fracture, micrography with SEM (Scanning Electron Microscope) of the initial and final fracture, phase analysis with optical microscopy, Brinell hardness and Vickers microhardness analyses, quantitative and qualitative chemical analysis, by using X-ray fluorescence and optical spectroscopy for carbon analysis, qualitative study on the state of tension was done. Field data were also collected. In the analyses data of the values resulting from the fractured stock parts and the design values were compared. After the investigation, one concluded that: the developed methodology systematized the investigation and enabled crossing data, thus minimizing diagnostic error probability, the morphology of the fracture indicates failure by the fatigue mechanism in a geometrically propitious location, a tension hub, the part was subjected to low tensions by the sectional area of the final fracture, the manufacturing material of the fractured part has low ductility, the component fractured in an earlier moment than the one recommended by the manufacturer, the percentages of C, Si, Mn and Cr of the fractured part present values which differ from the design ones, the hardness value of the superior limit of the fractured part is higher than that of the design, and there is no manufacturing uniformity between stock and fractured part. The work will contribute to optimizing the guidance of the actions in a mechanical engineering judicial expertise

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work was motivated by the importance of conducting a study of vehicle emissions in captive fleets with diesel engine, coupled with the predictive maintenance plan. This type of maintenance includes techniques designed to meet the growing market demand to reduce maintenance costs by increasing the reliability of diagnoses, which has increased interest in automated predictive maintenance on diesel engines, preventing problems that might evolve into routine turn into serious situations, solved only with complex and costly repairs, the Reliability Centered Maintenance, will be the methodology that will make our goal is reached, beyond maintaining the vehicles regulated as fuel consumption and emissions. To Therefore, technical improvements were estimated capable of penetrating the automotive market and give the inshore fleet emission rates of opacity of the vehicles, being directly related to the conditions of the lubricating oil thus contributing to reducing maintenance costs by contributing significantly to emissions of pollutants and an improvement in the air in large cities. This criterion was adopted and implemented, em 241 buses and produced a diagnosis of possible failures by the correlation between the characterization of used lubricating oils and the analysis of opacity, with the objective of the aid the detection and solution of failures for the maintenance of sub-systems according to design criteria, and for this to be a deductive methodology to determine potential causes of failures, has been automated to implement a predictive maintenance system for this purpose was used in our study a mobile unit equipped with a opacimeter and a kit for collection and analysis of lubricating oil and the construction of the network diagnostics, we used a computer program in Microsoft Office Access 2007 platform tool is indispensable for creating a database data, this method is being used and successfully implemented in seven (7) bus companies from the city of Natal (RN) Brazil

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main goal of the present work is related to the dynamics of the steady state, incompressible, laminar flow with heat transfer, of an electrically conducting and Newtonian fluid inside a flat parallel-plate channel under the action of an external and uniform magnetic field. For solution of the governing equations, written in the parabolic boundary layer and stream-function formulation, it was employed the hybrid, numericalanalytical, approach known as Generalized Integral Transform Technique (GITT). The flow is sustained by a pressure gradient and the magnetic field is applied in the direction normal to the flow and is assumed that normal magnetic field is kept uniform, remaining larger than any other fields generated in other directions. In order to evaluate the influence of the applied magnetic field on both entrance regions, thermal and hydrodynamic, for this forced convection problem, as well as for validating purposes of the adopted solution methodology, two kinds of channel entry conditions for the velocity field were used: an uniform and an non-MHD parabolic profile. On the other hand, for the thermal problem only an uniform temperature profile at the channel inlet was employed as boundary condition. Along the channel wall, plates are maintained at constant temperature, either equal to or different from each other. Results for the velocity and temperature fields as well as for the main related potentials are produced and compared, for validation purposes, to results reported on literature as function of the main dimensionless governing parameters as Reynolds and Hartman numbers, for typical situations. Finally, in order to illustrate the consistency of the integral transform method, convergence analyses are also effectuated and presented

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is analyzed through the concepts of tribology and mechanical contact and damage the suggestion of implementing a backup system for traction and passage of Pipeline Inspection Gauge (Pig) from the inside of pipelines. In order to verify the integrity of the pipelines, it is suggested the possibility of displacement of such equipment by pulling wires with steel wires. The physical and mechanical characteristics of this method were verified by accelerated tests in the laboratory in a tribological pair, wire versus a curve 90. It also considered the main mechanisms of wear of a sliding system with and without lubricant, in the absence and presence of contaminants. To try this, It was constructed a test bench able to reproduce a slip system, work on mode back-and-forth ("reciprocation"). It was used two kinds of wires, a galvanized steel and other stainless steel and the results achieved using the two kinds of steel cables were compared. For result comparative means, it was used steel cables with and without coating of Poly Vinyl Chloride (PVC). The wires and the curves of the products were characterized using metallographic analysis, microhardness Vickers tests, X-ray diffraction (XRD), X-Ray Refraction (XRF) and tensile tests. After the experiments were analyzed some parameters that have been measurable, it demonstrates to the impracticality of this proposed method, since the friction force and the concept of alternating request at the contact between the strands of wire and the inner curves that are part ducts caused severe wear. These types of wear are likely to cause possible failures in future products and cause fluid leaks

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of waste heat of energy conversion equipment to produce a cooling effect, consists currently in a very interesting way of efficiency improvement of energy systems. The present research has as intention the theoretical and experimental study of a new intermittent refrigeration system ejector cycle characteristics, with use of waste heat. Initially, was doing a bibliographical survey about the vapor ejector refrigeration system technology. In the following stage was doing a simulation of the corresponding thermodynamic cycle, with preliminarily intention to evaluate the performance of the system for different refrigerants fluids. On the basis of the results of the simulation were selected the refrigerant fluid and developed an experimental group of benches of the refrigeration system considered, where pressure and temperature sensory had been inserted in strategical points of the refrigeration archetype and connected to a computerized data acquisition system for measure the refrigerant fluid properties in the thermodynamic cycle. The test results obtained show good agreement with the literature

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of reflective surfaces functioning as thermal insulator has grown significantly over the years. Reflective thermal insulator are materials that have several characteristics such as low emissivity, low absorptivity and high reflectivity in the infrared spectrum. The use of these materials has grown a lot lately, since it contains several important radioactive properties that minimize the heat loss of thermal systems and cooling systems that are used to block the heat on the roof of buildings. A system made of three surfaces of 316 stainless steel mirror was built to analyze the influence of reflective surfaces as a way to reduce the heat loss and thereby conserve the energy of a thermal system. The system was analyzed both with and without the presence of vacuum, and then compared with a system that contained glass wool between the stainless steel mirror walls, since this isolator is considered resistive and also broadly used around the world in thermal systems. The reflectivity and emissivity of the surfaces used were also measured in this experiment. A type K thermocouple was fixed on the wall of the system to obtain the temperature of the stainless steel mirror surfaces and to analyze the thermal behavior of each configuration used. The results showed an efficiency of 13% when the reflective surfaces were used to minimize the heat loss of the thermal system. However, the system with vacuum had the best outcome, a 60% efficiency. Both of these were compared to the system made of glass wool as a thermal insulator

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the industry of ceramic in Rio G. do Norte, tile stands out as the most manufactured product by this industry, being the intermittent kiln abóbada and caieira the principal type of kiln used in burning. There was a need to make a study of the influence exerted by the type of kiln in which tiles are burnt in their thermo physical properties. The analysis started with 24 raw samples of tile, which was split in two groups of 12 samples and burnt in Abóbada and Caieira kiln. Besides that, it was made study of the tax of heat transfer to the environment (for each kiln). After having been burnt the samples were taken for laboratory analysis. The properties verified were impermeability, determination of dry mass, absorption of water, the load of bending rupture and its geometric characteristics, the tests were conducted following the currents standards. The tests were carried out according to the ABNT - NBR 15310. The calculation of the rate of heat transfer showed that the abóbada kiln is more efficient than the Caieira, however the results of tests on the samples revealed no superiority of one over another sample. So the furnace had no influence on the performance of the ceramic tiles