19 resultados para zooplâncton
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The major aim of this study was to test the hypothesis that the introduction of the Nile tilapia (Oreochromis niloticus) and the enrichment with nutrients (N and P) interact synergistically to change the structure of plankton communities, increase phytoplankton biomass and decrease water transparency of a semi-arid tropical reservoir. One field experiment was performed during five weeks in twenty enclosures (8m3) to where four treatments were randomly allocated: with tilapia addition (T), with nutrients addition (NP), with tilapia and nutrients addition (T+NP) and a control treatment with no tilapia or nutrients addition (C). A two-way repeated measures ANOVA was done to test for time (t), tilapia (T) and nutrient (NP) effects and their interaction on water transparency, total phosphorus, total nitrogen, phytoplankton and zooplankton. The results show that there was no effect of nutrient addition on these variables but significant fish effects on the biomass of total zooplankton, nauplii, rotifers, cladocerans and calanoid copepods, on the biovolume of Bacillariophyta, Zygnemaphyceae and large algae (GALD ≥ 50 μm) and on Secchi depth. In addition, we found significant interaction effects between tilapia and nutrients on Secchi depth and rotifers. Overall, tilapia decreased the biomass of most zooplankton taxa and large algae (diatoms) and decreased the water transparency while nutrient enrichment increased the biomass of zooplankton (rotifers) but only in the absence of tilapia. In conclusion, the influence of fish on the reservoir plankton community and water transparency was greater than that of nutrient loading. This finding suggests that biomanipulation should be a greater priority in the restoration of eutrophic reservoirs in tropical semi-arid regions
Resumo:
The aims of this study were: i) assessing the trophic state of the Mendubim reservoir (semi-arid, Rio Grande do Norte, Brazil; 05° 38 99,0 S 36°55 98,0 W) based on chlorophyll-a, total phosphorus and nitrogen concentrations and water transparency; ii) relating the patterns of temporal variation of zooplankton and phytoplankton to the trophic state of the reservoir and iii) investigating the carrying capacity of the reservoir for cage fish farming. The samplingwas done monthly from July 2006 to July 2007 in three stations at the reservoir: next to the dam (barrage), in the central region and in the mouth of the main tributary. The abiotic and biotic variables analyzed were: Secchi depth, volatiles and fixed suspended solids, chlorophyll-a, total phosphorus and nitrogen, TN:TP ratio and mesozooplankton and phytoplankton composition and biomass. The results showed that the reservoir can be considered as mesotrophic with mean concentrations of total nitrogen, phosphorus and chlorophyll-a equal to 1711, 1 μg.L-1, 30,8 μg.L-1 and 5,62 μg.L-1 respectively. The Cyanophyceae class was the most representative in terms of density, with the presence of potentially toxic species such as Microcystis aeruginosa, Planktothrix planctonica, Cylindrospermopsis raciborskii, Aphanizomenon sp. ,Aphanocapsa delicatissima and Pseudanabaena acicularis. Among the zooplankton, the genus Notodiaptomus presented the largest biomass values. Overall, our results show that the light limitation should explain the weak relationship between chlorophyll-a and total phosphorus and nitrogen concentrations. We concluded that the water of Mendubim reservoir is suitable for intensive fish cage aquaculture. Based on the carrying capacity calculations for this reservoir, we found that the maximum sustainable yield of tilapias in cages in the reservoir is 126 ton per year assuming a factor of food conversion of 1.5: 1.0 and a phosphorus content in the fish food of 1%
Resumo:
Top-down (grazing) and bottom-up (nutrient, light) controls are important in freshwater ecosystems regulation. Relative importance of these factors could change in space and time, but in tropical lakes bottom-up regulation has to been appointed as more influent. Present study aimed to test the hypothesis that phytoplankton growths rate in Armando Ribeiro reservoir, a huge eutrophic reservoir in semi-arid region of Rio Grande do Norte state, is more limited by nutrient available then zooplankton grazing pressure. Bioassay was conduced monthly from September (2008) to August (2009) manipulating two levels of nutrients (with/without addition) and two level of grazers (with/without removal). Experimental design was factorial 2X2 with four treatments (X5), (i) control with water and zooplankton from natural spot ( C ), (ii) with nutrient addition ( +NP ), (iii) with zooplankton remove ( -Z ) and (iv) with zooplankton remove and nutrient addition ( -Z+NP ). For bioassay confection transparent plastic bottles (500ml) was incubate for 4 or 5 days in two different depths, Secchi`s depth (high luminosity) and 3 times Secchi`s depth (low luminosity). Water samples were collected from each bottle in begins and after incubates period for chlorophyll a concentration analysis and zoopalnktonic organisms density. Phytoplankton growths rates were calculated. Bifactorial ANOVA was performance to test if had a significant effect (p<0,005) of nutrient addition and grazers remove as well a significant interaction between factors on phytoplankton growths rates. Effect magnitude was calculated the relative importance of each process. Results show that phytoplankton growth was in generally stimulated by nutrient addition, as while zooplankton remove rarely stimulated phytoplankton growth. Some significant interactions happening between nutrient additions and grazers remove on phytoplankton growth. In conclusion this study suggests that in studied reservoir phytoplankton growth is more controlled by ascendent factors than descendent