18 resultados para two input two output


Relevância:

80.00% 80.00%

Publicador:

Resumo:

O controle de sistemas MIMO (Multiple Input Multiple Output) é muitas vezes realizado por várias malhas de controladores clássicos que operam com restrições e apresentam baixo desempenho. Técnicas de controle adaptativo são uma alternativa interessante para aumentar o rendimento desses sistemas, como por exemplo os controladores MRAC (Model Reference Adaptive Control), que quando bem projetados, permitem que a dinâmica da planta seja escolhida de maneira a seguir um modelo de referência. O presente trabalho apresenta uma estratégia de desacoplamento para um sistema MIMO de três tanques acoplados e o projeto de um controlador MRAC para o mesmo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A pesquisa tem como objetivo desenvolver uma estrutura de controle preditivo neural, com o intuito de controlar um processo de pH, caracterizado por ser um sistema SISO (Single Input - Single Output). O controle de pH é um processo de grande importância na indústria petroquímica, onde se deseja manter constante o nível de acidez de um produto ou neutralizar o afluente de uma planta de tratamento de fluidos. O processo de controle de pH exige robustez do sistema de controle, pois este processo pode ter ganho estático e dinâmica nãolineares. O controlador preditivo neural envolve duas outras teorias para o seu desenvolvimento, a primeira referente ao controle preditivo e a outra a redes neurais artificiais (RNA s). Este controlador pode ser dividido em dois blocos, um responsável pela identificação e outro pelo o cálculo do sinal de controle. Para realizar a identificação neural é utilizada uma RNA com arquitetura feedforward multicamadas com aprendizagem baseada na metodologia da Propagação Retroativa do Erro (Error Back Propagation). A partir de dados de entrada e saída da planta é iniciado o treinamento offline da rede. Dessa forma, os pesos sinápticos são ajustados e a rede está apta para representar o sistema com a máxima precisão possível. O modelo neural gerado é usado para predizer as saídas futuras do sistema, com isso o otimizador calcula uma série de ações de controle, através da minimização de uma função objetivo quadrática, fazendo com que a saída do processo siga um sinal de referência desejado. Foram desenvolvidos dois aplicativos, ambos na plataforma Builder C++, o primeiro realiza a identificação, via redes neurais e o segundo é responsável pelo controle do processo. As ferramentas aqui implementadas e aplicadas são genéricas, ambas permitem a aplicação da estrutura de controle a qualquer novo processo

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently the uncertain system has attracted much academic community from the standpoint of scientific research and also practical applications. A series of mathematical approaches emerge in order to troubleshoot the uncertainties of real physical systems. In this context, the work presented here focuses on the application of control theory in a nonlinear dynamical system with parametric variations in order and robustness. We used as the practical application of this work, a system of tanks Quanser associates, in a configuration, whose mathematical model is represented by a second order system with input and output (SISO). The control system is performed by PID controllers, designed by various techniques, aiming to achieve robust performance and stability when subjected to parameter variations. Other controllers are designed with the intention of comparing the performance and robust stability of such systems. The results are obtained and compared from simulations in Matlab-simulink.