19 resultados para thin film thickness


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a study of nanostructured magnetic multilayer systems in order to syn- thesize and analyze the properties of periodic and quasiperiodic structures. This work evolved from the deployment and improvement of the sputtering technique in our labora- tories, through development of a methodology to synthesize single crystal ultrathin Fe (100) films, to the final goal of growing periodic and quasiperiodic Fe/Cr multilayers and investi- gating bilinear and biquadratic exchange coupling between ferromagnetic layer dependence for each generation. Initially we systematically studied the related effects between deposition parameters and the magnetic properties of ultrathin Fe films, grown by DC magnetron sput- tering on MgO(100) substrates. We modified deposition temperature and film thickness, in order to improve production and reproduction of nanostructured monocrystalline Fe films. For this set of samples we measured MOKE, FMR, AFM and XPS, with the aim of investi- gating their magnocrystalline and structural properties. From the magnetic viewpoint, the MOKE and FMR results showed an increase in magnetocrystalline anisotropy due to in- creased temperature. AFM measurements provided information about thickness and surface roughness, whereas XPS results were used to analyze film purity. The best set of parame- ters was used in the next stage: investigation of the structural effect on magnetic multilayer properties. In this stage multilayers composed of interspersed Fe and Cr films are deposited, following the Fibonacci periodic and quasiperiodic growth sequence on MgO (100) substrates. The behavior of MOKE and FMR curves exhibit bilinear and biquadratic exchange coupling between the ferromagnetic layers. By computationally adjusting magnetization curves, it was possible to determine the nature and intensity of the interaction between adjacent Fe layers. After finding the global minimum of magnetic energy, we used the equilibrium an- gles to obtain magnetization and magnetoresistance curves. The results observed over the course of this study demonstrate the efficiency and versatility of the sputtering technique in the synthesis of ultrathin films and high-quality multilayers. This allows the deposition of magnetic nanostructures with well-defined magnetization and magnetoresistance parameters and possible technological applications

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study will show the capability of the reactive/nonreactive sputtering (dc/rf) technique at low power for the growth of nanometric thin films from magnetic materials (FeN) and widegap semiconductors (AlN), as well as the technological application of the Peltier effect using commercial modules of bismuth telluride (Bi2Te3). Of great technological interest to the high-density magnetic recording industry, the FeN system represents one of the most important magnetic achievements; however, diversity of the phases formed makes it difficult to control its magnetic properties during production of devices. We investigated the variation in these properties using ferromagnetic resonance, MOKE and atomic force microscopy (AFM), as a function of nitrogen concentration in the reactive gas mixture. Aluminum nitride, a component of widegap semiconductors and of considerable interest to the electronic and optoelectronic industry, was grown on nanometric thin film for the first time, with good structural quality by non-reactive rf sputtering of a pure AlN target at low power (≈ 50W). Another finding in this study is that a long deposition time for this material may lead to film contamination by materials adsorbed into deposition chamber walls. Energy-dispersive X-ray (EDX) analysis shows that the presence of magnetic contaminants from previous depositions results in grown AlN semiconductor films exhibiting magnetoresistance with high resistivity. The Peltier effect applied to commercially available compact refrigeration cells, which are efficient for cooling small volumes, was used to manufacture a technologically innovative refrigerated mini wine cooler, for which a patent was duly registered

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is presently a worldwide interest in artificial magnetic systems which guide research activities in universities and companies. Thin films and multilayers have a central role, revealing new magnetic phases which often lead to breakthroughs and new technology standards, never thought otherwise. Surface and confinement effects cause large impact in the magnetic phases of magnetic materials with bulk spatially periodic patterns. New magnetic phases are expected to form in thin film thicknesses comparable to the length of the intrinsic bulk magnetic unit cell. Helimagnetic materials are prototypes in this respect, since the bulk magnetic phases consist in periodic patterns with the length of the helical pitch. In this thesis we study the magnetic phases of thin rare-earth films, with surfaces oriented along the (002) direction. The thesis includes the investigation of the magnetic phases of thin Dy and Ho films, as well as the thermal hysteresis cycles of Dy thin films. The investigation of the thermal hysteresis cycles of thin Dy films has been done in collaboration with the Laboratory of Magnetic Materials of the University of Texas, at Arlington. The theoretical modeling is based on a self-consistent theory developed by the Group of Magnetism of UFRN. Contributions from the first and second neighbors exchange energy, from the anisotropy energy and the Zeeman energy are calculated in a set of nonequivalent magnetic ions, and the equilibrium magnetic phases, from the Curie temperature up to the Nèel temperature, are determined in a self-consistent manner, resulting in a vanishing torque in the magnetic ions at all planes across the thin film. Our results reproduce the known isothermal and iso-field curves of bulk Dy and Ho, and the known spin-slip phases of Ho, and indicate that: (i) the confinement in thin films leads to a new magnetic phase, with alternate helicity, which leads to the measured thermal hysteresis of Dy ultrathin films, with thicknesses ranging from 4 nm to 16 nm; (ii) thin Dy films have anisotropy dominated surface lock-in phases, with alignment of surface spins along the anisotropy easy axis directions, similar to the known spin-slip phases of Ho ( which form in the bulk and are commensurate to the crystal lattice); and (iii) the confinement in thin films change considerably the spin-slip patterns of Ho.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ferromagnetic materials play an important role in the development of various electronic devices and, have great importance insofar as they may determine the efficiency, cost and, size of the devices. For this reason, many scientific researches is currently focused on the study of materials at ever smaller scales, in order to understand and better control the properties of nanoscale systems, i.e. with dimensions of the order of nanometers, such as thin film ferromagnetic. In this work, we analyze the structural and magnetic properties and magnetoresistance effect in Permalloy-ferromagnetic thin films produced by magnetron sputtering. In this case, since the magnetoresistance effect dependent interfaces of thin films, this work is devoted to the study of the magnetoresistance in samples of Permalloy in nominal settings of: Ta[4nm]/Py[16nm]/Ta[4nm], Ta[4nm]/Py[16nm]/O2/Ta[4nm], Ta[4nm]/O2/Py[16nm]/Ta[4nm], Ta[4nm]/O2/Py[16n m]/O2/Ta[4nm], as made and subjected to heat treatment at temperatures of 160ºC, 360ºC e 460ºC, in order to verify the influence of the insertion of the oxygen in the layer structure of samples and thermal treatments carried out after production of the samples. Results are interpreted in terms of the structure of the samples, residual stresses stored during deposition, stresses induced by heat treatments and magnetic anisotropies