183 resultados para termografia infravermelho
Resumo:
MELO, D. M. A. et al. Synthesis and charactezarion of lanthanum and yttrium doped Fe2O3 pigments. Cerâmica, São Paulo, v. 53, p. 79-82, 2007.
Resumo:
The mushrooms have been object of intense research in view of its potential raising of application in different sectors of the pharmacology and alimentary industry. Among diverse bioactive composites of polyssacharides nature that exist in the fungus the glucans are much searched. These are polymers of glucose and classified as the type of glicosidic linking [α, β]. Peroxisome proliferator-activated receptors (PPARs), ranscription factors belonging to the family of nuclear receptors that bind themselves o specific agonists, have shown their importance in controlling the inflammatory process. The aim of this study was to perform a chemical characterization of extract rom the mushroom Caripia montagnei, assess its antiinflammatory and antibacterial effect and determine if this effect occurs via PPAR. This mushroom is composed of carbohydrates (63.3±4.1%), lipids (21.4l±0.9%) and proteins (2.2± 0.3%). The aqueous solution resulting from the fractionation contained carbohydrates (98.7±3.3%) and protein (1.3±0.25%). Analyses of infrared spectrophotometry and of nuclear magnetic esonance demonstrated that the extract of mushroom C. montagnei is rich in β-glucans. In hioglycolate-induced peritonitis, the C. montagnei glucans (50 mg/kg) educed the inflammatory process in 65.5±5.2% and agonists, pharmacological igands, for PPAR: Wy-14643 (49.3±6.1%), PFOA (48.9±3.8%) and clofibrate in 45.2±3.2%. Sodium diclofenac showed a reduction of 81.65±0.6%. In the plantar edema, the glucans from C. montagnei (50 mg/kg) and L-NAME reduced the edema to a similar degree 91.4±0.3% and 92.8±0,5 %, respectively. In all the groups tested, nitric oxide (NO), an inflammation mediator, showed a significant reduction in the nitrate/nitrite levels when compared to the positive control (P<0.001). The C. montagnei glucans did not show cytotoxicity in the concentrations tested (2.5, 5.0, 10.0, 20.0 and 40.0 µg/100 µL). Antibacterial activity demonstrated that, unlike total extract, there was no inhibition of bacterial growth. The C. montagnei glucans show great potential for antiinflammatory applications. This effect suggests that it is mediated by PPAR activation and by COX and iNOS inhibition
Resumo:
Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug
Resumo:
Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry
Resumo:
Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry
Resumo:
Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.
Resumo:
Polymers of mushroom cellular wall are recognized for presenting a lot of biological activities such as anti-inflammatory, antioxidant and anti-tumoral action. Polysaccharides from mushrooms of different molecular mass obtained mushrooms can activate leucocytes, stimulate fagocitic, citotoxic and antimicrobial activity including oxygen reactive species production. In this study were investigated chemical characteristics, in vitro antioxidant activity and anti-inflammatory action in an acute inflammation model of the polysaccharides extracted from Tylopilus ballouii. Results showed that were mainly extracted polysaccharides and that it primarily consisted of mannose and galactose with variable amounts of xylose and fucose. Infrared analysis showed a possible interation between this polysaccharides and proteins. In addition, molecular mass was about 140KDa. Antioxidant activity was tested by superoxide and hydroxyl radical scavenging assay, total antioxidant activity and lipid peroxidation assay. For superoxide and hydroxyl radical generation inhibition, polysaccharides have an IC50 of 2.36 and 0.36 mg/mL, respectively. Lipid peroxidation assay results showed that polysaccharides from Tylopilus ballouii present an IC50 of 3.42 mg/mL. Futhermore, anti-inflammatory assay showed that polysaccharides cause an paw edema decreasing in 32.8, 42 and 56% in 30, 50 and 70 mg/Kg dose, respectively. Thus, these results can indicate a possible use for these polysaccharides from Tylopilus ballouii as an anti-inflammatory and antioxidant.
Resumo:
The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
Seaweeds sulfated polysaccharides have been described as having various pharmacological activities. However, nothing is known about the influence of salinity on the structure of sulfated polysaccharides from green seaweed and pharmacological activities they perform. Therefore, the main aim of this study was to evaluate the effect of salinity of seawater on yield and composition of polysaccharides-rich fractions from green seaweed Caulerpa cupressoides var. flabellata, collected in two different salinities beaches of the coast of Rio Grande do Norte, and to verify the influence of salinity on their biological activities. We extracted four sulfated polysaccharides-rich fractions from C. cupressoides collected in Camapum beach (denominated CCM F0.3; F0.5; F1.0; F2.0), which the seawater has higher salinity, and Buzios beach (denominated CCB F0.3; F0.5; F1.0; F2.0). Different from that observed for other seaweeds, the proximate composition of C. cupressoides did not change with increased salinity. Moreover, interestingly, the C. cupresoides have high amounts of protein, greater even than other edible seaweeds. There was no significant difference (p>0.05) between the yield of polysaccharide fractions of CCM and its CCB counterparts, which indicates that salinity does not interfere with the yield of polysaccharide fractions. However, there was a significant difference in the sulfate/sugar ratio of F0.3 (p<0.05) and F0.5 (p<0.01) (CCM F0.3 and CCB F0.5 was higher than those determined for their counterparts), while the sulfate/sugar ratio the F1.0 and F2.0 did not change significantly (p>0.05) with salinity. This result suggested that the observed difference in the sulfate/sugar ratio between the fractions from CCM and CCB, is not merely a function of salinity, but probably also is related to the biological function of these biopolymers in seaweed. In addition, the salinity variation between collection sites did not influence algal monosaccharide composition, eletrophoretic mobility or the infrared spectrum of polysaccharides, demonstrating that the salinity does not change the composition of sulfated polysaccharides of C. cupressoides. There were differences in antioxidant and anticoagulant fractions between CCM and CCB. CCB F0.3 (more sulfated) had higher total antioxidant capacity that CCM F0.3, since the chelating ability the CCM F0.5 was more potent than CCB F0.5 (more sulfated). These data indicate that the activities of sulfated polysaccharides from CCM and CCB depend on the spatial patterns of sulfate groups and that it is unlikely to be merely a charge density effect. C. cupressoides polysaccharides also exhibited anticoagulant activity in the intrinsic (aPTT test) and extrinsic pathway (PT test). CCB F1.0 and CCM F1.0 showed different (p<0,001) aPTT activity, although F0.3 and F0.5 showed no difference (p>0,05) between CCM and CCB, corroborating the fact that the sulfate/sugar ratio is not a determining factor for biological activity, but rather for sulfate distribution along the sugar chain. Moreover, F0.3 and F0.5 activity in aPTT test was similar to that of clexane®, anticoagulant drug. In addition, F0.5 showed PT activity. These results suggest that salinity may have created subtle differences in the structure of sulfated polysaccharides, such as the distribution of sulfate groups, which would cause differences in biological activities between the fractions of the CCM and the CCB
Resumo:
Marine algae are one of the major sources of biologic compounds. In extracellular matrix of these organisms there are sulfated polysaccharides that functions as structural components and provides protection against dehydration. The fraction 1.0 (F1.0) rich in sulfated galactans obtained from red seaweed Hypnea musciformis was physicochemical characterized and evaluated for pharmacologic activity through antioxidant activity, cytotoxic action on erythrocytes, anticoagulant, stimulatory action under antithrombotic heparan sulfate synthesis and their effects on cell proliferation and cycle cell progression. The main components of F1.0 were carbohydrates (49.70 ± 0.10%) and sulfate (44.59 ± 0.015%), presenting phenolic compounds (4.79 ± 0.016%) and low protein contamination (0.92 ± 0.001%). Fraction 1.0 showed polidisperse profile and signs in infrared analysis in 1262, 1074 and 930, 900 and 850 attributed to sulfate esters S=O bond, presence of a 3,6- anidrogalactose C-O bond, non-sulfated β-D-galactose and a C-O-SO4 bond in galactose C4, respectively. The fraction rich in sulfated galactans exhibited strong antioxidant action under lipid peroxidation assay with IC50 of 0.003 mg/mL. Besides the inhibition of hemolysis induced by H2O2 in erythrocytes treated with F1.0, this fraction did not promote significant cytotoxity under erythrocytes membranes. F1.0 exhibited low anticoagulant activity causing moderate direct inhibition of enzimatic activity of thrombin. This fraction promoted stimulation around of 4.6 times on this synthesis of heparan sulfate (HS) by rabbit aortic endothelial cells (RAEC) in culture when was compared with non treated cells. The fraction of this algae displayed antiproliferative action under RAEC cells causing incresing on cell number on S fase, blocking the cycle cell progression. Thus F1.0 presented cytostatic and no cytotoxic action under this cell lineage. These results suggest that F1.0 from H. musciformis have antioxidant potential which is a great effect for a compound used as food and in food industry which could be an alternative to food industry to prevent quality decay of lipid containing food due to lipid peroxidation. These polysaccharides prevent the lipid peroxidation once the fraction in study exhibited strong inhibitory action of this process. Furthermore that F1.0 present strong antithrombotic action promoting the stimulation of antithrombotic HS synthesis by endothelial cells, being important for thrombosis preventing, by its inhibitory action under reactive oxygen species (ROS) in some in vitro methods, being involved in promotion of hypercoagulability state.
Resumo:
Seaweeds are a major source of biologically active compounds . In the extracellular matrix of these organisms are sulfated polysaccharides that functions as structural components preventing it against dehydration. The fraction 0.9 (FucB) rich in sulfated fucans obtained from brown seaweed Dictyota menstrualis was chemical characterized and evaluated for pharmacological activity by testing anticoagulant activity, stimulatory action on the synthesis of an antithrombotic heparan sulfate, antioxidant activity and its effects in cell proliferation. The main components were FucB carbohydrates (49.80 ± 0.10 %) and sulfate (42.30 ± 0.015 %), with phenolic compounds ( 3.86 ± 0.016 %) and low protein contamination ( 0.58 ± 0.001 % ) . FucB showed polydisperse profile and analysis of signals in the infrared at 1262, 1074 and 930 cm -1 and 840 assigned to S = O bonds sulfate esters , CO bond presence of 3,6- anhydrogalactose , β -D- galactose non- sulfated sulfate and the axial position of fucose C4 , respectively. FucB exhibited moderate anticoagulant activity , the polysaccharides prolonged time (aPTT ) 200 ug ( > 90s ) partial thromboplastin FucB no effect on prothrombin time (PT), which corresponds to the extrinsic pathway of coagulation was observed. This stimulation promoted fraction of about 3.6 times the synthesis of heparan sulfate (HS) by endothelial cells of the rabbit aorta ( RAEC ) in culture compared with cells not treated with FucB . This has also been shown to compete for the binding site with heparin. The rich fraction sulfated fucans exhibited strong antioxidant activity assays on total antioxidant (109.7 and 89.5 % compared with BHT and ascorbic acid standards ) , reducing power ( 71 % compared to ascorbic acid ) and ferric chelation ( 71 , comparing with 5 % ascorbic acid). The fraction of algae showed cytostatic activity on the RAEC cells revealed that the increase of the synthesis of heparan sulfate is not related to proliferation. FucB showed antiproliferative action on cell lines modified as Hela and Hep G2 by MTT assay . These results suggest that FucB Dictyota menstrualis have anticoagulant , antithrombotic , antioxidant potential as well as a possible antitumor action, promoting the stimulation of the synthesis of antithrombotic HS by endothelial cells and is useful in the prevention of thrombosis, also due to its inhibitory action on species reactive oxygen ( ROS ) in some in vitro systems , being involved in promoting a hypercoagulable state
Resumo:
The alginic acid or alginates are acidic polysaccharides found in brown seaweed widely used in food, cosmetic, medical and pharmaceutical industry. This paper proposes the extraction, chemical characterization and verification of the pharmacological activities of brown seaweed variegata Lobophora . The alginate was extracted from the seaweed Lobophora variegata and part was sulphated for comparative purposes. The native extract showed 42% total sugar, 65% uronic acid, 0,36 % protein and 0% of sulfate, while the sulfate showed 39% , 60%, 0.36% and 27,92 % respectively. The presence of a sulfate group may be observed by the metachromasia with toluidine blue in electrophoresis system and characteristic vibration 1262,34 cm-1 in infrared spectroscopy connections assigned to S = O. We observed the formation of films and beads of native alginate, where more concentrated solution 6% resulted in a thicker and more consistent film. Native alginate showed proliferative activity at concentrations (25 and 50 mcg), (50 mg) and (100 mg) in 3T3 cell line in 24h, 48h and 72h, respectively , as the sulfated (100 mg) in 24 . Also showed antiproliferative or cytotoxic activity in HeLa cells of strain, (25 and 100 mg), (25 and 100 mg) and (25, 50 and 100 mg), to native, now for the sulfate concentrations (100 mg) in 24 (25, 50 and 100 mg) in 48 hours, and (50 and 100 mg ) 72h. For their antioxidant activity, the sulfated alginates have better total antioxidant activity reaching 29 % of the native activity while 7.5 % of activity . For the hydroxyl radical AS showed high inhibition ( between 77-83 % ) in concentrations, but the AN surpassed these numbers in the order of 78-92 % inhibition. The reducing power of AN and AS ranged between 39-82 % . In the method of ferric chelation NA reached 100 % chelating while the AS remained at a plateau oscillating 6.5%. However, in this study , we found alginates with promising pharmacological activities, to use in various industries as an antioxidant / anti-tumor compound
Resumo:
The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process
Resumo:
heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke