23 resultados para sujeitos
Resumo:
Objective:To analyze the immediate effects of the Kinesio Taping® application on the quadriceps neuromuscular performance, postural balance and lower limb function in healthy subjects. Materials andmethods:This is a randomized, controlled, blinded clinical trial. Sixtyfemale volunteers(age: 23.3±2.5 years old, BMI: 22.2±2.1kg/m2)wererandomly assigned intothreegroups with20memberseach,and performedone of these threeprotocols: control -10 minutesof rest,experimental 1- patch application ontherectusfemoris (RF), vastuslateralis(VL) and vastusmedialis(VM) and experimental 2-KT application on the same muscles. Allunderwent an evaluationfor singleand triple hop distance, postural balance (baropodometry), joint position sense(JPS), peak torque (concentric and eccentricevaluation at 60°/s)and electromyographic activityof VL,before andafter intervention.Results: There wasasignificant increasein the jump distanceof thethreestudied groups,with no differencebetween groups.There were nosignificant changesin postural balance,JPS, concentricpeak torqueand RMSof the VLin none of the groups. There was a reduction ineccentricpeak torquein all groups, without differencesbetween groups.Conclusion:The KT application on the RF, VL and VMmusclesis not able tosignificantly improvelower limbfunction and postural balance, as well as the kneeextensor peaktorque, JPSand the VL muscleactivation amplitudeof healthy women.
Resumo:
O Acidente Vascular Cerebral (AVC) é uma síndrome clínica caracterizada por uma perturbação focal da função cerebral. Geralmente ocasiona quadro de disfunção motora acompanhada de prejuízo da função respiratória. Tendo em vista tal quadro e suas possíveis repercussões, a fisioterapia respiratória tem sido amplamente requisitada com o intuito reverter ou minimizar as complicações. Dentre os recursos utilizados para este fim, os espirômetros de incentivo são utilizados com o objetivo de restaurar os volumes pulmonares, modificando o padrão respiratório e de ventilação pulmonar, prevenindo a incidência das complicações pulmonares. O objetivo do presente estudo foi comparar o desempenho na realização da espirometria de incentivo volume-orientada (EI) e seus efeitos agudos sobre os volumes pulmonares em pacientes após AVC e sujeitos saudáveis. Foram selecionados 40 voluntários, de ambos os gêneros, divididos em grupo experimental (GE), composto por 20 pacientes após AVC e grupo controle (GC) composto por 20 sujeitos saudáveis, pareados quanto à idade, gênero e Índice de Massa Corpórea (IMC). A coleta dos dados foi realizada em duas etapas: (1) Avaliação cognitiva e neurofuncional (Mini Exame do Estado Mental, National Institute Stroke Scale, Medida de Independência Funcional, teste de desempenho da aprendizagem) (2) Avaliação Respiratória (espirometria, manovacuometria e cinemática tóraco-abdominal, através da Pletismografia Opto-eletrônica). A análise estatística foi realizada através do software Graphpad Prism 4.0, em que foram utilizados os testes t Student e ANOVA two-way para comparação intergrupos e adotado nível de significância de 5%. Os resultados mostraram que os pacientes apresentam desempenho inferior na aprendizagem da espirometria de incentivo, com uma média de erros maior 2,95 ± 1,39, quando comparados aos sujeitos saudáveis, 1,15 ± 0,98. Em relação à prática observacional utilizada não foi encontrada diferença entre a aprendizagem através do vídeo ou do terapeuta. Em relação aos efeitos agudos da espirometria de incentivo volume-orientada, os pacientes após AVC apresentaram valores de volume corrente 24,7%, 18% e 14,7% inferiores quando comparados aos sujeitos saudáveis nos momentos pré-EI, EI e pós-EI, porém a espirometria de incentivo induziu incrementos de volume similares em ambos os grupos estudados, com 75, 3% para os pacientes e 73,3% para os sujeitos saudáveis. A espirometria de incentivo promove ganhos significativos no volume corrente da parede torácica, tanto em pacientes acometidos por AVC como em sujeitos saudáveis, no entanto o desempenho da aprendizagem é inferior para os pacientes, para ambas as práticas com vídeo ou terapeuta
Resumo:
Venous wounds cause physical, psychological and financial problems that impact the quality of life of patients. Treatment alternatives are investigated in order to reduce healthcare costs and improve quality of life of people affected by this problem. Physical resources, such as therapeutic ultrasound (US), are being considered in the treatment of ulcers as a potential healing agent. This study aimed to investigate the application of US as a treatment for venous ulcers. Subjects were divided into two groups: US group, where treatment consisted of 5 sessions of pulsed US (3 MHz, 1W/cm²) associated with compression and kinesiotherapy; and sham group, where individuals went through the same procedures, but with sham US therapy. Subjects were evaluated for wound size by planimetry and digital photography, visual analogue scale for pain, quality of life by the questionnaires SF- 36 and VEINES-QoL/Sym and enzymatic activity of metalloproteinases 2 and 9 by zymography. It was observed mean reduction in wound area of 41.58±53.8% for the US group and 63.47±37.2% for the placebo group, maintenance of quality of life scores in the US group and significant improvement (p<0.05) in the placebo group by VEINES questionnaire. It was observed decreased perception of pain in the placebo group. Sample feasibility for analysis of the protein activity of metalloproteinases 2 and 9 by zymography collected by swab method was also confirmed. Our data did not give us evidence to support the theory that the US accelerates healing of venous ulcers in a short-term analysis. However, we observed that standard care associated with compression therapy and kinesiotherapy were able to significantly shorten the progression of chronic venous ulcers
Resumo:
Objetivo: Investigar os efeitos imediatos do Kinesio Taping® no desempenho neuromuscular do Quadríceps Femoral (QF) de indivíduos submetidos à reconstrução do Ligamento Cruzado Anterior (LCA). Metodologia: trata-se de um ensaio clínico e randomizado composto por 45 indivíduos do sexo masculino que se encontravam entre 12ª e 17ª semanas após reconstrução do LCA. Todos foram submetidos a uma avaliação inicial composta pela análise do equilíbrio postural, através da baropodometria; determinação do Senso de Posição Articular (SPA), seguidas das avaliações isocinéticas excêntricas e concêntricas a 600/s, concomitante com a captação do sinal eletromiográfico do músculo Vasto Lateral (VL). Posteriormente foram alocados de forma aleatória em Grupo Controle (GC), Grupo Placebo (GP) e Grupo Experimental (GE). Os indivíduos do GE foram submetidos ao protocolo sugerido (aplicação do Kinesio Taping® no QF do membro acometido), enquanto os do GP utilizaram a aplicação do Kinesio Taping® sem as recomendações propostas pelo método. Já os indivíduos do GC permaneceram em repouso por dez minutos, sendo todos os indivíduos submetidos a uma reavaliação de forma idêntica à primeira. Foram analisadas as seguintes variáveis: pico de torque médio, pico de torque/peso corporal, potência muscular e erro absoluto do SPA para a dinamometria; amplitude ântero-posterior e médio-lateral para a baropodometria; e a amplitude de ativação muscular (Root Means Square - RMS) por meio da eletromiografia de superfície. Resultados: Nenhuma das variáveis analisadas apresentou diferenças intergrupo ou intragrupo. Conclusão: O Kinesio Taping® não altera o desempenho neuromuscular do quadríceps femoral de indivíduos submetidos à reconstrução do LCA para nenhuma das variáveis analisadas.
Resumo:
Problems associated to longitudinal interactions in buried pipelines are characterized as three-dimensional and can lead to different soil-pipe issues. Despite the progress achieved in research on buried pipelines, little attention has been given to the three-dimensional nature of the problem throughout the last decades. Most of researches simplify the problem by considering it in plane strain condition. This dissertation aims to present a study on the behavior of buried pipelines under local settlement or elevation, using three-dimensional simulations. Finite element code Plaxis 3D was used for the simulations. Particular aspects of the numerical modeling were evaluated and parametric analyzes were performed, was investigated the effects of soil arching in three-dimensional form. The main variables investigated were as follows: relative density, displacement of the elevation or settlement zone, elevated zone size, height of soil cover and pipe diameter/thickness ratio. The simulations were performed in two stages. The first stage was involved the validation of the numerical analysis using the physical models put forward by Costa (2005). In the second stage, numerical analyzes of a full-scale pipeline subjected to a localized elevation were performed. The obtained results allowed a detailed evaluation of the redistribution of stresses in the soil mass and the deflections along the pipe. It was observed the reduction of stresses in the soil mass and pipe deflections when the height of soil cover was decreased on regions of the pipe subjected to elevation. It was also shown for the analyzed situation that longitudinal thrusts were higher than vi circumferential trusts and exceeded the allowable stresses and deflections. Furthermore, the benefits of minimizing stress with technical as the false trench, compressible cradle and a combination of both applied to the simulated pipeline were verified
Resumo:
Work that aims to understand the meanings attributed to school knowledge by young students of the EJA State School 15 October, located in the Natal’s North Zone. Young people were elected as the focus of interest for having a numerical expression increased in groups of adult education EJA, but above all, they demand for new issues and specific to school. For the research, we used methodologically the Comprehensive Interview organized by Kaufmann (2013), making use of its own analytical and organization of information, captured through semi-structured interviews and on-site observation. Whereas the meaning ascribed to it in relation to the school knowledge conditions the way to experience the school, sought the theoretical constructions of Bernard Charlot (2000; 2005), the understanding of knowledge as a relation of the subject with you, with each other and with the world, so we know beyond the object content. Analytical work incorporates also the contributions of Marc Augé (1994, 1997) with respect to the understanding of meaning as a social construction. Reflections were also made in light of Michel de Certeau (2012), in that it allows you to take the students as active subjects and producers of survival tactics in life and at school. From the speech of students, seized three units of meaning, namely: the learning considered most important by young students, which make up a set of ethical and moral values; the school as a guarantee of "a better future", in which young people seek to ensure a job in adulthood, however, from a "magical relationship" with knowledge, in that the target of young students is more the certificate completion of the level of education they attend, which is not necessarily associated with school learning. The third core seized sense is the school as a place of socialization, that is, a space where you can meet with friends to talk. There is therefore a relationship with knowledge that is prestigious for the youth of adult education EJA; there is an objective expectation of these students about the school; and they do "use" of the institution to "meetings" that are not necessarily with the curricular knowledge. Consider, therefore, these questions which hold school sense of reframing, is part of an effort to understand the subject of adult education EJA and helps to think ways to ensure continuity and their success in the institution.
Resumo:
Aim : To evaluate and to standardize surface electromyography (sEMG) normalization procedures for respiratory muscles by comparing muscle activation during Maximal Voluntary Isometric Contraction (MVIC) and Maximal Respiratory Pressures (MIP, MEP and sniff test). Methods: Healthy subjects were evalua ted regarding demographics, spirometry and sEMG during the five maneuvers: sniff test, MIP , MEP and Maximal Voluntary Isometric C ontraction (MVIC) of RA, SCM and SC A . For electrode placement, skin was prepared with abrasion, followed by shaving in the foll owing regions for acquisition of el ectromyographic signals: (1) SC M: lower third of the distance between the mastoid process and t he sternoclavicular joint; (2) SC A : 5 cm to the right from the sternoclavicular joint and at this point, up to 2 cm; and (3 ) RA: the level of umbilicus, 4 cm to the right. In electromyographic variables analysis , the data normality was assessed by Shapiro - Wilk test. Comparisons among studied maneuvers were performed by Friedman Test and Dunn’s post - hoc for multiple comparisons a mong inspiratory maneuvers, and Mann Whitney test for expiratory maneuvers. Subgroups differences between genders were performed by Student's t test or Mann - Whitney test according to data normality. Results: 35 subjects participated in the study, b ut 5 we re excluded (BMI> 25 kg/ m²). Sample consisted of 30 subjects (1 5 women), mean age 27.3±7.43 years, BMI 22.2 ± 1.69 kg/m² and spirometric indices within normal limits. Specific MVIC for SCM, SCA and RA showed the highest RMS. When we grouped sample into gender we found no difference among RMS values for the studied SCM maneuvers, while for SCA, MVIC SCM / SCA was the one with the highest RMS and for RA, MVIC RA in men. Once considering women, MVIC SCM/SCA showed the highest RMS for SCM, SCA and MVIC RA showed t he highest value for RA. Conclusion: MVIC for SCM, SCA and RA muscles showed the highest RMS values. When comparing RMS between the studied groups, there was no significant difference between men and women.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)