33 resultados para subprodutos agroindustriais
Resumo:
Among the main challenges in the beer industrial production is the market supply at the lowest cost and high quality, in order to ensure the expectations of customers and. consumers The beer fermentation stage represents approximately 70% of the whole time necessary to its production, having a obligatoriness of strict process controls to avoid becoming bottleneck in beer production. This stage is responsible for the formation of a series of subproducts, which are responsible for the composition of aroma/bouquet existing in beer and some of these subproducts, if produced in larger quantities, they will confer unpleasant taste and odor to the final product. Among the subproducts formed during the fermentation stage, total vicinal diketones is the main component, since it is limiting for product transfusion to the subsequent steps, besides having a low perception threshold by the consumer and giving undesirable taste and odor. Due to the instability of main raw materials quality and also process controls during fermentation, the development of alternative forms of beer production without impacting on total fermentation time and final product quality is a great challenge to breweries. In this work, a prior acidification of the pasty yeast was carried out, utilizing for that phosphoric acid, food grade, reducing yeast pH of about 5.30 to 2.20 and altering its characteristic from flocculent to pulverulent during beer fermentation. An increase of six times was observed in amount of yeast cells in suspension in the second fermentation stage regarding to fermentations by yeast with no prior acidification. With alteration on two input variables, temperature curve and cell multiplication, which goal was to minimize the maximum values for diketones detected in the fermenter tank, a reduction was obtained from peak of formed diacetyl and consequently contributed to reduction in fermentation time and total process time. Several experiments were performed with those process changes in order to verify the influence on the total fermentation time and total vicinal diketones concentration at the end of fermentation. This experiment reached as the best production result a total fermentation time of 151 hours and total vicinal diketone concentration of 0.08 ppm. The mass of yeast in suspension in the second phase of fermentation increased from 2.45 x 106 to 16.38 x 106 cells/mL of yeast, which fact is key to a greater efficiency in reducing total vicinal diketones existing in the medium, confirming that the prior yeast acidification, as well as the control of temperature and yeast cell multiplication in fermentative process enhances the performance of diketones reduction and consequently reduce the total fermentation time with diketones concentration below the expected value (Max: 0.10 ppm)
Resumo:
The production of enzymes by microorganisms using organic residues is important and it can be associated with several applications such as food and chemical industries and so on. The objective of this work is the production of CMCase, Xylanase, Avicelase and FPase enzymes by solid state fermentation (SSF) using as substrates: bagasse of coconut and dried cashew stem. The microorganisms employed are Penicillium chrysogenum and an isolated fungus from the coconut bark (Aspergillus fumigatus). Through the factorial design methodology and response surface analysis it was possible to study the influence of the humidity and pH. For Penicillium chrysogenum and the isolated fungus, the coconut bagasse was used as culture medium. In another fermentation, it was used the mixture of coconut bagasse and cashew stem. Fermentations were conducted using only the coconut bagasse as substrate in cultures with Penicillium chrysogenum fungus and the isolated one. A mixture with 50% of coconut and 50% of cashew stem was employed only for Penicillium chrysogenum fungus, the cultivation conditions were: 120 hours at 30 °C in BOD, changing humidity and pH values. In order to check the influence of the variables: humidity and pH, a 2 2 factorial experimental design was developed, and then two factors with two levels for each factor and three repetitions at the central point. The levels of the independent variables used in ascending order (-1, 0, +1), to humidity, 66%, 70.5% and 75% and pH 3, 5 and 7, respectively. The software STATISTICA TM (version 7.0, StatSoft, Inc.) was used to calculate the main effects of the variables and their interactions. The response surface methodology was used to optimize the conditions of the SSF. A chemical and a physic-chemical characterization of the coconut bagasse have determined the composition of cellulose (%) = 39.09; Hemicellulose (%) = 23.80, Total Lignin (%) = 36.22 and Pectin (%) = 1.64. To the characterization of cashew stem, the values were cellulose (g) = 15.91 Hemicellulose (%) = 16.77, Total Lignin (%) = 30.04 and Pectin (%) = 15.24. The results indicate the potential of the materials as substrate for semisolid fermentation enzyme production. The two microorganisms used are presented as good producers of cellulases. The results showed the potential of the fungus in the production of CMCase enzyme, with a maximum of 0.282 UI/mL and the Avicelase enzyme the maximum value ranged from 0.018 to 0.020 UI/ mL, using only coconut bagasse as substrate. The Penicillium chrysogenum fungus has showed the best results for CMCase = 0.294 UI/mL, FPase = 0.058 UI/mL, Avicelase = 0.010 UI/mL and Xylanase = 0.644 UI/ mL enzyme, using coconut bagasse and cashew stem as substrates. The Penicllium chrysogenum fungus showed enzymatic activities using only the coconut as substrate for CMCase = 0.233 UI/mL, FPase = 0.031 to 0.032 UI/ mL, Avicelase = 0.018 to 0.020 UI/mL and Xylanase = 0.735 UI/ mL. Thus, it can be concluded that the used organisms and substrates have offered potential for enzyme production processes in a semi-solid cultivation
Resumo:
This work aims to study the drying of cashew-nut pulp with different lay-out of dryers using conventional and solar energy. It concerns with the use of exceeding of the regional raw material and the suitable knowledge for the applicability of the drying systems as pathway for food conservation. Besides, it used renewable sources as solar energy to dry these agroindustrial products. Runs were carried out using a conventional tray-dryer with temperature, air velocity control and cashew slice thickness of 55°C, 65°C, 75°C; 3.0; 4.5, 6.0 m s-1; 1.0; 1.5 and 2.0 cm, respectively, in order to compare the studied systems. To evaluate the conventional tray-dryer, it was used a diffusional model of 2nd Fick´s law, where the drying curves were quite well fitted to an infinite flat plate design. For the drying runs where the room temperature had no control, it was developed a phenomenological-mathematical model for the solar dryer with indirect radiation under natural and forced convection based on material and energy balances of the system. Besides, it was carried out assays in the in natura as well as dehydrated, statistic analysis of the experimental drying data, sensorial analysis of the final dry product and a simplified economical analysis of the systems studied
Resumo:
An evaluation project was conducted on the technique of treatment for effluent oil which is the deriving process to improve cashews. During the evaluation the following techniques were developed: advanced processes of humid oxidation, oxidative processes, processes of biological treatment and processes of adsorption. The assays had been carried through in kinetic models, with an evaluation of the quality of the process by means of determining the chemical demand of oxygen (defined as a technique of control by means of comparative study between the available techniques). The results demonstrated that the natural biodegradation of the effluent ones is limited, as result using the present natural flora in the effluent one revealed impracticable for an application in the industrial systems, independent of the evaluation environment (with or without the oxygen presence). The job of specific microorganisms for the oily composite degradation developed the viability technique of this route, the acceptable levels of inclusion in effluent system of treatment of the improvement of the cashew being highly good with reasonable levels of removal of CDO. However, the use combined with other techniques of daily pay-treatment for these effluent ones revealed to still be more efficient for the context of the treatment of effluent and discarding in receiving bodies in acceptable standards for resolution CONAMA 357/2005. While the significant generation of solid residues the process of adsorption with agroindustrial residues (in special the chitosan) is a technical viable alternative, however, when applied only for the treatment of the effluent ones for discarding in bodies of water, the economic viability is harmed and minimized ambient profits. Though, it was proven that if used for ends of I reuse, the viability is equalized and justifies the investments. There was a study of the photochemistry process which have are applicable to the treatment of the effluent ones, having resulted more satisfactory than those gotten for the UV-Peroxide techniques. There was different result on the one waited for the use of catalyses used in the process of Photo. The catalyses contained the mixing oxide base of Cerium and Manganese, incorporated of Potassium promoters this had presented the best results in the decomposition of the involved pollutants. Having itself an agreed form the gotten photochemistry daily paytreatment resulted, then after disinfection with chlorine the characteristics next the portability to the water were guarantee. The job of the humid oxidation presented significant results in the removal of pollutants; however, its high cost alone is made possible for job in projects of reuses, areas of low scarcity and of raised costs with the capitation/acquisition of the water, in special, for use for industrial and potable use. The route with better economic conditions and techniques for the job in the treatment of the effluent ones of the improvement of the cashew possesses the sequence to follow: conventional process of separation water-oil, photochemistry process and finally, the complementary biological treatment
Resumo:
The petroleum industry deals with problems which are difficult to solve because of their relation to environmental issues. This is because amounts of residue are generated which vary in type and danger level. The soil contamination by non aqueous liquid phase mixtures, specifically hydrocarbon petroleum has been a reason for great concern, mainly the aromatic and polycyclic aromatic, which present risk to human health due to its carcinogenic and mutagenic character. The Advanced Oxidative Processes (AOP) are efficient technologies for destruction of organic compounds of difficult degradation and, often, they are present in low concentrations. They can be considered clean technologies, because there is no formation of solid by-products or the transfer of pollutor phases. This work focuses on the study of the degradation of petroleum industrial waste, by Advanced Oxidation Processes. Treatments tackling petroleum residues, contaminated soil, and water occurring in the production of petroleum reached the following Polycyclic Aromatic Hydrocarbons (PAH) degradation levels: solid residues 100% in 96 treatment hours; water residue - 100% in 6 treatment hours; soil contamination (COT degradation) - 50.3% in 12 treatment hours. AOP were effective in dealing with petroleum residues thus revealing themselves to be a promising treatment alternative
Resumo:
Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal
Resumo:
The human interference in the semiarid region of Seridó Potiguar has promoted the increase of degraded areas. The economic dynamic that was established in the Seridó territory, especially after the fall of the trinomial cattle-cotton-mining in the 70s and 80s of the 20th century as pillars of the regional economy, resulted in an accelerated process of erosion of natural resources. The municipalities of the Seridó region have been spatially reordered by this new economic dynamic, marked by the growth of existing enterprises, and the development of new agricultural practices. One of the municipalities in the region that restructured its territorial space with the emergence of new agro-industrial activities was the town of Parelhas. With the demise of the trinomial cattle-cotton-mining in the 1980s, other productive activities were intensified from the 1990s, amongst them, pottery, responsible for the vegetal extraction for use as energy source. This recent economic and spatial restructuring in the region, reflected in the Parelhense municipal territory, required new productive ingredients responsible for the modification of past production relations that were based on cattle, cotton and mining. By that a process of exploring the environment was unleashed, especially the native vegetation, in an uncontrolled manner. In this context, the objective of this study was to survey and detect deforestation in the areas of Caatinga vegetation, used indiscriminately as energy supply for new agricultural practices, using remote sensing techniques based on the quantification of the Normalized Difference Vegetation Index / NDVI, Soil-Adjusted Vegetation Index / SAVI, surface temperature and rainfall data in the years 1990 and 2010. The results indicated that SAVI values above 0.2 in 1990 and 2010 represent the areas with the highest density of vegetation that occur exclusively along the major drainages in the town and areas of higher elevations. The areas between the ranges of values from 0.5 to 0.15 SAVI are areas with poor vegetation. On the other hand the highest values of temperature are distributed in the western and southeastern parts of the township, usually in places where the soil is exposed or there is sparse vegetation. The areas of bare soil decreased in extension in 2010 at 11, 6% when related to 1990, this was caused by a higher rainfall intensity in the first half of 2010, but no regeneration of vegetation occurred in some places in the western and southeastern areas of the municipality today, due to the extraction of firewood to fuel the furnaces of industries in town
Resumo:
El turismo en el Estado de Rio Grande do Norte (RN) se presenta constantemente por los medios de comunicación de massa como fuente de desarrollo regional y local , delante de las inversiones generadas y la posibilidad verdadera/potencial de trabajos en sus diversos sectores. Las políticas públicas del sector fueran y son responsables por la captación de inversiones privadas y su generación consiguiente de puestos de trabajo. En los años 90, el gobierno del RN puso el Programa de Desarrollo del Turismo en Rio Grande do Norte PRODETUR/RN I, con vistas a la competitividad local como destinación regional y nacional. El programa relacionado fue responsable por las inversiones diversas en infraestructura en los espacios implicados, aunque de forma asimétrica. Tales inversiones han contribuido para consolidar los discursos positivos con respecto al binomio turismo y trabajo . Con respecto a los discursos acríticos relacionados a este tema, mientras generador de trabajos y del desarrollo local es que se ha planteado esta investigación, puesto que la calidad de los trabajos generados por la actividad turística no se questiona y, de forma análoga, los costes sociales de la política pública, es decir, la importancia de su modelo de desarrollo , tampoco es questionado. Desde la problematica que se ha delineado arriba las questones que han norteado la investigación fueran: ¿de que forma la política pública del turismo llamada de PRODETUR/RN fue eficaz para generar empleo y renta a las ciudades en que se ha llavado a cabo? ¿Cuales son las características de estos trabajos? ¿ como estos trabajos se dividen en el espacio de las ciudades? Así el área delimitada para el estudio englobou las seis ciudades apoyadas por este Programa: Natal, Parnamirim, Ceará-Mirim, Nísia Floresta, Extremoz y Tibau do Sul. El recorte temporal de la pesquisa corresponde a la implantación de este programa (1996) hasta los dias actuales. La investigación de campo fue basada en el uso de 186 encuestas con los trabajadores en la actividad del turismo de litoral sur de Rio Grande do Norte, más allá de la realización (secundaria) de ocho entrevistas con agentes sociales que tienen relación con el tema. Como consideraciones finales de la investigación, se creer que hay una asimetría en el espacio turístico potiguar, donde Natal es la zona que más ha recibido las ventajas más grandes proporcionadas por la actividad, mientras que el restante de las ciudades son el eje para la sustentación de la actividad turística de Natal. De esta forma, las ciudades periféricas (todas, excepto Natal) incluidas en PRODETUR/RN ejercen el papel del subproducto de la ciudad capital, donde la precarización de las relaciones de trabajo se evidencian, todavía más en estas ciudades secundarias . La política pública en vez de intentar ecualizar las ventajas de la actividad en las seis ciudades, contribuye más, todavía para consolidar el nivel de centralizad de Natal. El PRODETUR/RN I fue capaz de generar, indirectamente, trabajos significativos, sin embargo la mayoría de éstos si presentan en los niveles operacionales de la actividad, con las características puestas en esta investigación (baja escolaridad, bajas rentas, falta de formalidad, levantadas horas de trabajo, bajo grado de sindicación y otros más); los puestos de trabajos creados si hallan sobretodo en Natal; y las demás ciudades sirven como elementos de apoyo para la capital mientras producto central de las decisiones sobre el turismo en el Estado del RN
Resumo:
Prospecting pharmacological active polysaccharides from agricultural byproducts, such as corncobs, is an underexplored practice in the scientific community. Thus, this work aims to expand knowledge about pharmacological activities of polysaccharides extracted from corncobs. From corn cob flour a extract was obtained by ultrasound waves in an alkaline medium, and the end of the process the product was termed PECC (polysaccharidic extract from corncobs). This extract was physicochemical characterized and evaluated by in vitro assays as an antioxidant, cytotoxic, anticoagulant and imunomodulator agent. Results indicated significant activity metal chelating by PECC, and the use of PECC in cell culture cells showed no toxic effects to normal cell lines, but toxic action against HeLa tumor cells due promoting cell death by apoptosis. In addition, other pharmacological effects were observed, the PECC decreased nitric oxide (NO) production by activated macrophages, and prolonged blood clotting time through APTT assay. Then methanolic, ethanolic and ketone fractions were obtained from fractionation of PECC polysaccharides. Five methanolic fractions, six ethanolic fractions and two ketones were obtained; and all fractions were evaluated for antioxidant, cytotoxic, anticoagulant, immunomodulatory activities. E1.4 fraction exhibited significant metal chelating effect, a toxic action to induce apoptosis in HeLa cells, decreased NO production by activated macrophages, and extended blood clotting time. These results showed that the PECC pharmacological active polysaccharides would be present in the fraction E1.4. From fractionation of E1.4 polysaccharide six subfractions with different sizes were obtained: <3; 3-10; 10-30; 30-50; 50-100 and >100 KDa. About 80% of E1.4 polysaccharides had lower size to 10 KDa, and all the subfractions showed over 61% sugar in their chemical compositions. These subfractions exhibited different monosaccharide compositions, but xylose was presented in all of them. The subfractions exhibited distinct pharmacological effects in in vitro assays. Smaller subfractions (<30 KDa) had highest metal chelating activity and greater toxic action in tumor cells. The intermediate fractions (between 30-100 KDa) decreased more NO production of activated macrophages, for other side, the larger size (>100 KDa) modulated a greater number of inflammatory cytokines, and the had greatest anticoagulant effect. Therefore, when analyzing all the results together it is evident that the PECC pharmacological polysaccharides are heteroxylans, and were concentrated in E1.4 fraction, and heteroxilanas pharmacological effects depends on their molecular size. Thus, corncobs could be used as source from molecules with biotechnology potential
Resumo:
The sugarcane production consists in the principal product activity in the state of Alagoas, holding a structure composed of 25 unities of production that represents the economic base of more than a half of its municipies, what make it be the biggest producer of the sector in North and Northwest, exporting its products for countries in different continents. From this reference, it was searched in the present work, to understand the configuration of the circuit space production of sugar cane in Alagoas, from the use of the territory, trough the analyses of the more significant events related to the sector, and, the established rules by the State, through the government, by organs like Institute of Sugar and Alcohol (IAA), and programs like National Alcohol Program (Proálcool), between others, that had as function to structure and to allocate resources to the sugar cane sector. It was realized that the investments done made possible the renovation of techniques used in the sugar cane complex. In the beginning, with the substitution of the mill for factories and, afterwards, the improvement of the agriculture and factory process themselves, improving the utilization of the byproduct, and the productive integration of instances, specially with the sugar, cane, electricity generation production, intensifying the participation of the state in the internation division of labor, giving it a organization structure divided by big hegemonic agents of this process. SO, the sugar cane geographic configuration existing in alagoano territory was restructured and the circuit even more pass to constitute movement of many scales, subsidized by cooperation circles. However, this configuration showed itself subservient to world commerce, what conditions the adoption of hegemonic practices that are far from the local projects and living practices. The verticality imposed offers a configuration that isn’t peculiar, that only serves to answer to the big hegemonic agent commands, characterizing the continuity of the present capitalism process. It means that the sugar cane factories use corporately the territory as resource to obtain more lucrativity and this way dominate the bigger quantity of consumer commerce
Resumo:
The contamination of water bodies with toxic substances causes a decrease in water quality, representing a risk to public health. In this context, human activities are generally seen as the main sources of water degradation. However, elements found naturally in the environment can also compromise water quality. Thus, the Boqueirão‘s dam, located in the municipality of Parelhas (RN, Brazil), was chosen as area for the development of this study, as its geological region is rich in the emission of natural ionizing radiation that produces byproducts like lead and Radon. Moreover, the area has a strong human influence that enhances the risks of pollutant discharge in this body of water.Thus, the objectives of this study were centered (i) in the analysis of risk perception in the city of Parelhas (RN/Brasil) due to the use of the water from the Boqueirão Dam; and (ii) in the assessment of water quality in the Dam using methods that quantify, mainly, heavy metals and radiation levels, as well as these toxics potential of inducing mutations on genetic material. The analysis of risk perception showed that the population in the city of Parelhas can perceive a risk in using the water from the dam and that they can recognize factors that influence the water quality. Regarding the second objective, the set of data point to the contamination of the Dam by heavy metals, as well as levels of radioactive parcicles and Radon – also present in high concentrations in outdoor air and on soil. Thus, it is possible to infer that the population residing in this area is subjected to injuries caused by exposure to natural and anthropogenic contamination. Our findings corroborate with the perception of the population regarding the risks associated with the use of the Dam for several types of activities. It is expected that the information gathered in this study can substantiate activities and future researches in this semiarid region in the Rio Grande do Norte/Brazil. Also, that the set of data can enable a better understanding of the specific toxicological scenario of risk found for the population and the effect of the contamination for the biota, which aids the development of a future risk assessment and a consequent management of this local issue.
Resumo:
The treatment of wastewater is essential to human health. One of the most important steps is the disinfection treatment which uses chlorine to eliminate bacteria as required by environmental agencies. However, the identification of potentially toxic byproducts generated by this method, such as trihalomethanes, has stimulated the development of new alternative disinfection technologies. Among them, heterogeneous photocatalysis, TiO2 photocatalysis and electrochemical disinfection are considered suitable alternatives to the chlorination method. Thus, the present dissertation analyzes the evolution of active chlorine species in a synthetic NaCl solution and it is tested to treat a synthetic solution of the dye Reactive Blue 19 using boron-doped diamond (BDD) and ruthenium oxide (Ti/Ru0.3Ti0.7O2) as anodes. The indirect electrochemical process was discussed in terms of mineralization of the total organic load and percentage of color removal in order to evaluate the applicability of electrochemical technology. Electrochemical experiments were carried out with different current densities (25, 50 and 75 mA.cm-2) during 120 minutes. On the other hand, other important parameter in this study was the influence of the proportion sp3/sp2 on BDD anode on the performance of the evolution of active chlorine species which was investigated by electrolytic techniques (linear polarization), with the intention of determining the related training oxidizing species and consumption energy to chemical or electrochemical reactions. From the results, it can be noted that the BDD electrode showed better efficiency throughout the electrochemical process.
Resumo:
The treatment of wastewater is essential to human health. One of the most important steps is the disinfection treatment which uses chlorine to eliminate bacteria as required by environmental agencies. However, the identification of potentially toxic byproducts generated by this method, such as trihalomethanes, has stimulated the development of new alternative disinfection technologies. Among them, heterogeneous photocatalysis, TiO2 photocatalysis and electrochemical disinfection are considered suitable alternatives to the chlorination method. Thus, the present dissertation analyzes the evolution of active chlorine species in a synthetic NaCl solution and it is tested to treat a synthetic solution of the dye Reactive Blue 19 using boron-doped diamond (BDD) and ruthenium oxide (Ti/Ru0.3Ti0.7O2) as anodes. The indirect electrochemical process was discussed in terms of mineralization of the total organic load and percentage of color removal in order to evaluate the applicability of electrochemical technology. Electrochemical experiments were carried out with different current densities (25, 50 and 75 mA.cm-2) during 120 minutes. On the other hand, other important parameter in this study was the influence of the proportion sp3/sp2 on BDD anode on the performance of the evolution of active chlorine species which was investigated by electrolytic techniques (linear polarization), with the intention of determining the related training oxidizing species and consumption energy to chemical or electrochemical reactions. From the results, it can be noted that the BDD electrode showed better efficiency throughout the electrochemical process.
Resumo:
The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.
Resumo:
The monoaromatic compounds are toxic substances present in petroleum derivades and used broadly in the chemical and petrochemical industries. Those compounds are continuously released into the environment, contaminating the soil and water sources, leading to the possible unfeasibility of those hydrous resources due to their highly carcinogenic and mutagenic potentiality, since even in low concentrations, the BTEX may cause serious health issues. Therefore, it is extremely important to develop and search for new methodologies that assist and enable the treatment of BTEX-contaminated matrix. The bioremediation consists on the utilization of microbial groups capable of degrading hydrocarbons, promoting mineralization, or in other words, the permanent destruction of residues, eliminating the risks of future contaminations. This work investigated the biodegradation kinetics of water-soluble monoaromatic compounds (benzene, toluene and ethylbenzene), based on the evaluation of its consummation by the Pseudomonas aeruginosa bacteria, for concentrations varying from 40 to 200 mg/L. To do so, the performances of Monod kinetic model for microbial growth were evaluated and the material balance equations for a batch operation were discretized and numerically solved by the fourth order Runge-Kutta method. The kinetic parameters obtained using the method of least squares as statistical criteria were coherent when compared to those obtained from the literature. They also showed that, the microorganism has greater affinity for ethylbenzene. That way, it was possible to observe that Monod model can predict the experimental data for the individual biodegradation of the BTEX substrates and it can be applied to the optimization of the biodegradation processes of toxic compounds for different types of bioreactors and for different operational conditions.