55 resultados para polyester prosthesis
Resumo:
The advantage in using vegetable fibres in place of synthetic fibres such as glass fibre, for reinforcements in composites are: biodegradability, low cost, low density, good tenacity, good thermal properties, low energy content and reduced use of instruments for its treatment or processing. Even though, problems related to low mechanical performance of some of the natural fibres, has caused difficulty in their direct application in structural elements. The use of alternative materials like hybrid composites has been encouraged, thus trying to better the structural performance of the composites with natural fibres. This work presents a comparative study of the strength and stiffness of hybrid composites with orthopthalic polyester matrix reinforced with E-fibre glass, jute and curauá. The experimental part includes uniaxial tension and three point bending tests to determine the mechanical properties of the final product. The hybrid composite was manufactured in a local industry and was in the form of laminates. All the samples were projected to withstand the possible structural applications as reservoirs and pipes. CH (laminated hybrid composite with glass and curauá fibres). The results obtained show clearly the influence of the hybridization in all the types tested and indicate a good mechanical performance of the composite with glass/curauá fibres in relation to the composite with glass fibres. Aspects in relation to the interfaces glass/curauá composites besides the fracture characteristics for all loading types were also analysed
Resumo:
The manufacturing of above and below-knee prosthesis starts by taking surfac measurements of the patient s residual limb. This demands the making of a cartridg with appropriate fitting and customized to the profile of each patient. The traditiona process in public hospitals in Brazil begins with the completion of a record file (according to law nº388, of July 28, 1999 by the ministry of the health) for obtaining o the prosthesis, where it is identified the amputation level, equipment type, fitting type material, measures etc. Nowadays, that work is covered by the Brazilian Nationa Health Service (SUS) and is accomplished in a manual way being used commo measuring tapes characterizing a quite rudimentary, handmade work and without an accuracy.In this dissertation it is presented the development of a computer integrate tool that it include CAD theory, for visualization of both above and below-knee prosthesis in 3D (i.e. OrtoCAD), as well as, the design and the construction a low cos electro-mechanic 3D scanner (EMS). This apparatus is capable to automatically obtain geometric information of the stump or of the healthy leg while ensuring smalle uncertainty degree for all measurements. The methodology is based on reverse engineering concepts so that the EMS output is fed into the above mentioned academi CAD software in charge of the 3D computer graphics reconstruction of the residualimb s negative plaster cast or even the healthy leg s mirror image. The obtained results demonstrate that the proposed model is valid, because it allows the structura analysis to be performed based on the requested loads, boundary conditions, material chosen and wall thickness. Furthermore it allows the manufacturing of a prosthesis cartridge meeting high accuracy engineering patterns with consequent improvement in the quality of the overall production process
Resumo:
The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed
Resumo:
Structures capable of absorbing large amounts of energy are of great interest, particularly for the automotive and aviation industries, to reduce tbe impact on passengers in the case of a collision. The energy absorption properties of composite materials structures can be tailored, thus making these structures an appealing option a substitute of more traditional structures in applications where energy absorption is crucial. ln this research, the influence of some parameters, which affect the energy absorption capacity of composite material tubes, was investigated. The tubes were fabricated by hand lay-up, using orthophthalic polyester resin and a plain weave E-glass fabric Test specimens were prepared and tested under compression load. The ínfluence of the following parameters on the specific energy absorption capacity of the tubes was studied: fiber configuration (0/90º or ± 45°), tube cross-section (circular or square), and processing conditions (with or without vacuum). The results indicated that circular cross-section tubes with fibers oriented at 0/90º presented the highest level of specific energy absorbed. Further, specimens from tubes fabricated under vacuum displayed higher energy absorption capacity, when compared with specimens from tubes fabricated without vacuum. Thus, it can be concluded that the fabrication process with vacuum produce composite structures with better energy absorption capacity
Resumo:
This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed
Resumo:
In the manufacture of composite, textile materials are being used as reinforcement. Generally, the combination of the matrix with the textile material in the form of fibres or yarns is used depending on their distribution in the web. In the present work, in place of fibres or yarns, a knitted structure in the form of the final product which is defined as preform. The preform is weft knit manufactured with polyester filaments. In the manufacture of composite, polyester resin was used as matrix. The physical and mechanical properties as well as the formability of the weft knit were analysed. The physical and mechanical properties as well as the formability of the knitted structure were analysed. The results obtained on the analysis show that the courses and wales of the weft knit structure and the tensile properties help the formability of the structure and the impregnation of the resin. It could be clearly observed that composite structure in the direction of the courses support more tension than in the direction of the wales. In relation to the three points flexural tests it was possible to note that there was more flexion in the direction of wales, what was expected. It was also possible to note that there are other advantages such as reduction in the loss of materials used, homogeneity in the distribution of the knitted structure in the mould, reduction in the preparation time and also in the reduction in the cost of manufacture
Resumo:
There are a number of damaging mechanisms that various materials can suffer in service. However, when working with polymer composite materials, this is something that requires analysis, especially when exposed to adverse environmental conditions. Thus, the objective of the present thesis is the study of the direct influence of environmental aging and the form of hybridization of the reinforcement woven on the structural stability, surfacedegradation and fracture process of polymer composites laminates. For this, the development of two polymer composite laminates was necessary, where one of them was reinforced with a bi-directional woven with hybrid strandsofkevlar-49/glass-Efibers, and the other also with a bi-directionalwoven, however with weft and warpformed of alternating strandsof Kevlar-49 fibers and glass-E fiber The reinforcementwoven are industrially manufactured. Both laminates use a polyester resin as a matrixand are made up of four layers each. All laminates were industrially prepared by the hand lay-up method of manufacturing. To do this, test specimens were manufactured of the respective laminates and submitted to environmental aging accelerated through the aging chamber. They were exposed to alternating cycles of UV radiation and moisture (heated steam) for a standard defined period. At the end of the exposure period the specimens were subjected to mechanical tests of uniaxial tensile and bending in three points and to the characterizationsof the fracture and surface deterioration. In addition, they were submitted to a structural degradation assessment by the measurement of mass variation technique (MMVT) and the measurement of thickness variation technique (MTVT), this last technique being developed in this thesis. At the end of the analysis it was observed that the form of hybridization of the reinforcement woven and the aging process directly influence with losses or gain in mechanical properties, with losses in the structural degradation and in the formation and propagation of damage mechanism of the developedcomposite laminates
Resumo:
The application of composite materials and in particular the fiber-reinforced plastics (FRP) has gradually conquered space from the so called conventional materials. However, challenges have arisen when their application occurs in equipment and mechanical structures which will be exposed to harsh environmental conditions, especially when there is the influence of environmental degradation due to temperature, UV radiation and moisture in the mechanical performance of these structures, causing irreversible structural damage such as loss of dimensional stability, interfacial degradation, loss of mass, loss of structural properties and changes in the damage mechanism. In this context, the objective of this thesis is the development of a process for monitoring and modeling structural degradation, and the study of the physical and mechanical properties in FRP when in the presence of adverse environmental conditions (ageing). The mechanism of ageing is characterized by controlled environmental conditions of heated steam and ultraviolet radiation. For the research, it was necessary to develop three polymer composites. The first was a lamina of polyester resin reinforced with a short glass-E fiber mat (representing the layer exposed to ageing), and the other two were laminates, both of seven layers of reinforcement, one being made up only of short fibers of glass-E, and the other a hybrid type reinforced with fibers of glass-E/ fibers of curaua. It should be noted that the two laminates have the lamina of short glass-E fibers as a layer of the ageing process incidence. The specimens were removed from the composites mentioned and submitted to environmental ageing accelerated by an ageing chamber. To study the monitoring and modeling of degradation, the ageing cycles to which the lamina was exposed were: alternating cycles of UV radiation and heated steam, a cycle only of UV radiation and a cycle only of heated steam, for a period defined by norm. The laminates have already undergone only the alternating cycle of UV and heated steam. At the end of the exposure period the specimens were subjected to a structural stability assessment by means of the developed measurement of thickness variation technique (MTVT) and the measurement of mass variation technique (MMVT). Then they were subjected to the mechanical tests of uniaxial tension for the lamina and all the laminates, besides the bending test on three points for the laminates. This study was followed by characterization of the fracture and the surface degradation. Finally, a model was developed for the composites called Ageing Zone Diagram (AZD) for monitoring and predicting the tensile strength after the ageing processes. From the results it was observed that the process of degradation occurs Abstract Raimundo Nonato Barbosa Felipe xiv differently for each composite studied, although all were affected in certain way and that the most aggressive ageing process was that of UV radiation, and that the hybrid laminated fibers of glass-E/curaua composite was most affected in its mechanical properties
Resumo:
The growing demand in the use of composite materials necessitates a better understanding its behavior to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. It is know that most of the structural elements are designed with presence of geometric discontinuities (holes, notches, etc) in their longitudinal sections and / or transversals, and that these discontinuities affect the mechanical response of these elements. This work has aims to analyze a study of the mechanical response, when in the presence geometric discontinuity, of polymer matrix composite laminates (orthophthalic polyester) to the uniaxial tensile test. The geometric discontinuity is characterized by the presence of a center hole in the transversal section of the composite. In this study, different kinds of stacking sequences are tested, with and without the presence of the hole, so as to provide better understanding of the mechanical properties. This sense, two laminates were studied: the first is only reinforced by with seven layers short mats of fiberglass-E (CM) and the second where the reinforcement of fiberglass-E comes in the form of bidirectional fabric (CT), with only four layers. The laminate CT has the presence of anisotropy (sense of continuous fibers with respect to the applied load) as the main parameter influencing its mechanical behavior, behavior this, not observed for the CM. In addition to the mechanical properties was also studied the fracture characteristics developed in each composite laminated. The results also showed that the presence of the hole in the transversal section decreased the ultimate strength of laminates and changed the final characteristic of fracture in all kinds of composite laminated studied
Resumo:
This paper aims to present the feasibility of using a composite using discarded material from the cultivation of banana tree (pseudostem), which is fibrillated together with synthetic resin replacing glass fiber to be used in structural elements that do not demand large mechanical stress such as reservoirs, troughs, domes, sewage pipes etc.. For this, there were studies about the mechanical properties of a composite made with polyester resin and fiber of banana tree (Musa sp, musac), in which the splints were removed from the pseudostem, being made fibrillation by hand, with the aid of a brush steel, followed by natural drying. After treatment for cleaning and removal of wax, the fiber was cut into pieces of approximately 60 mm to 100 mm, for, together with synthetic resin, make cards of a features fiber composite with random orientation relative to the weight of the resin. We used three different percentages of fiber (3%, 6% and 9%), in order to make a comparative study between them and what would be the one with the best performance. Were manufactured specimens of each material and then subjected to uniaxial tensile tests, three point bending, moisture absorption and thermal characteristics. The results show that, in general, the use of banana tree fiber is feasible simply by an improvement in the production process (machining of the procedure) and greater care in the manufacture of parts
Resumo:
The use of composite materials and alternative is being increased every day, as it becomes more widespread awareness that the use of renewable and not harmful to the environment is part of a new environmentally friendly model. Since its waste (primarily fiberglass) can not be easily recycled by the difficulty that still exists in this process, since they have two phases mixed, a polymeric matrix thermoset difficult to recycle because it is infusible and phase of fiber reinforcements. Thermoset matrix composites like Polyester + fiberglass pose a threat due to excessive discharge. Aiming to minimize this problem, aimed to reuse the composite Polyester + fiber glass, through the wastes obtained by the grinding of knifes and balls. These residues were incorporated into the new composite Polyester/Fiberglass for hot compression mold and compared tribological to composites with filler CaCO3, generally used as filler, targeting a partial replacement of CaCO3 by such waste. The composites were characterized by thermal analysis (TGA, DSC and DMA), by the surface integrity (roughness determination, contact angle and surface energy), mechanical properties (hardness) and tribological tests (wear and coefficient of dynamic friction) in order to evaluate the effect of loads and characterize these materials for applications that can take, in the tribological point of view since waste Polyester + fiberglass has great potential for replacement of CaCO3
Resumo:
In the present research work, composites were prepared using pine apple leaf fibres (PALF) as reinforcement with unsaturated polyester resin as matrix, incorporating with fire retardant at different compositions. The PALF was obtained from the decortication of pine apple leaves obtained from Ramada 4 from Ielmo Marinho in the State of Rio Grande do Norte. The unsaturated polyester resin and the catalyzer were bought from the local establishment. The fire retardant, aluminium tri-hydroxide - Al(OH)3 was donated by Alcoa Alumínio S.A and was used in the proportions of 20%, 40% and 60% w/w. Initially the fibres were treated with 2% NaOH for 1 hour, to remove any impurities present on the fibre surface, such as wax, fat, pectin and pectate, in order to have a better adsorption of the fibres with the matrix as well as the flame retardant. The fibre mat was prepared in a mat preparator by immersion, developed in the Textile Engineering Laboratory, at the UFRN. The composites (300x300x3 mm) were prepared by compression molding and the samples (150x25x3 mm) for analysis of the properties were cut randomly using a laser cutter. Some of the cut samples were used to measure the smoke emission and fire resistance using UL94 standard. Mechanical tension-extension and flexural properties were carried in CTGás RN and the Laboratório de Metais e Ensaios Mecânicos Engenharia de Materiais UFRN , as well as SEM studies were carried out at Núcleo de Estudos em Petróleo e Gás Natural - UFRN . From the observed results, it was noted that, there was no marked influence of the fire retardant on the mechanical properties. Also in the water absorption test, the quantity of water absorbed was less in the sample with higher concentration of fire retardant. It was also observed that the increase in the proportion of the fire retardant increased the time of burning, may be due to the compactness of the composite due to the presence of fire retardant as a filling material even though it was meant to reduce the rate of inflammability of the composite
Resumo:
Use of natural fibres as a reinforcement material in the manufacture of composites show a series of advantages: availability, biodegradability, low weight and regeneration in relation to synthetic fibres, thus justifying its utilization. In the present research work, composites were developed with chicken feathers (KF), using unsaturated polyester resin as matrix, for diversified applications, mainly in the furniture/timber industry.At present, in Brazil the chicken feathers are used as part of the animal feed, even though this material possesses low aggregated value. The chicken feathers are hollow, light and resistant. After washing with water at room temperature, a part of the chicken feathers were treated with 2% NaOH. Composites were manufactured using treated and untreated chicken feathers with unsaturated orthothalic polyester resin and 1% peroxide as catalyser, obtained in the commerce. Samples with size 150x25x3 mm for mechanical tests were cut by laser in the composite plate. Mechanical analyses were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN. All the analyses were in accordance with ASTM standards. SEM analyses were also carried out on the samples.In the analyses of the results obtained, it was observed that the composites made with untreated chicken feathers showed better results (Traction 11.406 MPa and 9.107 MPa Bending 34.947 and 20.918 MPa for samples with and without treatment respectively) compared to the composite with treated feathers. Very low values of the water absorption results, evidenced the impermeability characteristic of the feathers. From the SEM images, the structure, fracture and the fibre/matrix adsorption can be evidenced. In the flammability test, it was observed that despite the feathers having sulfur as a constituent, natural inhibitor of flame, no burning support of the composites, because the manufacturing process of the composite
Resumo:
The objective of this research is the fabrication of a composite reinforced with dyed sisal fiber and polyester matrix for application in the fields such as, fashion, clothing, interior textiles; fashion accessories are some of the examples. For the fabrication of the composite, the sisal fibers were subjected to processes such as: chemical treatment with sodium hydroxide (NaOH) in the removal of impurities; bleaching for removing the yellowish color of the natural fiber and dyeing with direct dyes to confer the colors blue, green and orange. The search for new technologies ecologically correct has become a major concern in recent decades. Studies show that composite polymer reinforced by natural fibers is suitable for a large number of applications, and its use is advantageous in terms of economic and ecological. The dyed fibers were cut to a length of 30 mm, is used in the confection of webs. For this purpose, a web preparer by immersion, developed in the Laboratory of Chemical Textile of UFRN. The composite sheets measuring 300 x 300 x3 mm were molded by compression, with unsaturated orthophthalic polyester as matrix, and the samples in sizes 150 x 25 x 3 mm were cut with the aid of a laser machine, to be subjected to traction and flexion. The mechanical properties of traction and flexion in three points were performed in the Laboratory of metal and mechanical tests of Materials Engineering of UFRN. The resulting samples from the tests were evaluated in scanning electron microscope (SEM) at CTGas RN. On the basis of the analysis of the results from the mechanical tests, it was observed that the composite had good mechanical behavior, both in traction as in flexion. Furthermore, it was observed that in the water absorption test, the samples had a different percentage among themselves, this occurred due to the variation of density found in the fibre webs. The images of the SEM showed the failures from the manufacturing process and the adhesion of fibre/matrix. When the samples were prepared with the dyed fibers to be applied in fashion, the results were positive, and it can be concluded that the main objective of this work was achieved
Resumo:
In the present work, three composites with distinct reinforcements (polyester, modal e polyester + modal), all if a unsaturated orthophthalic polyester resin as matrix were used, in order to conduct a comparative study by mechanical tests and water absorption. The fibre mats were prepared in a mat preparatory by immersion developed in the Textile Engineering Laboratory. The composites were manufactured using a closed mould process by compression using an unsaturated orthophthalic polyester resin as matrix and 1% MEK (methyl ethyl ketone peroxide) as an initiator. In each composite twelve samples with the dimensions of 150x25x3 mm were cut randomly for the mechanical analysis (tension x extension, three points bending and water absorption and Scanning Electron Micsroscopy). The mechanical tests were carried out in the Laboratório de Metais e Ensaios Mecânicos UFRN . All the analyses were carried out according to the ASTM norms. The resultant samples from the mechanical analysis were subjected for the Scanning Electron Microscopy analysis. Based on the results obtained, it was observed that the reinforced composite with two fibres (modal + polyester) presented better results in comparison to the other two composites both in the tension/extension as well on the three point bending tests. In the water absorption test, it was possible to observe an equilibrium in the water absorption by the modal and polyester composite, due to the union of the two fibres. In the SEM images, the regions of rupture in the composites as well as the adsorption between the fiber and the matrix could be observed