53 resultados para poli(caprolactona)
Resumo:
The aim of this study was to generate an asymmetric biocompactible and biodegradable chitosan membrane modified by the contact with a poly(acrylic acid) solution at one of its sides at room temperature and 60◦C. The pure chitosan membrane, as well as the ones treated with poly(acrylic acid) were characterized by infrared spectroscopy (FTIRATR) at angles of 39◦, 45◦ and 60◦ , swelling capacity in water, thermal analysis (TG/DTG), scanning electronic microscopy (SEM) and permeation experiments using metronidazole at 0,1% and 0,2% as a model drug. The results confirmed the presence of ionic interaction between chitosan and poly(acrylic acid) by means of a polyelectrolyte complex (PEC) formation. They also showed that such interactions were more effective at 60◦C since this temperature is above the chitosan glass transition temperature wich makes the diffusion of poly(acrylic acid) easier, and that the two treated membranes were asymmetrics, more thermically stable and less permeable in relation to metronidazole than the pure chitosan membrane
Resumo:
Magnetic particles are systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover magnetic particles with an organic material, as polymers. In this work, magnetic particles were obtained through covering magnetite particles with poly(methyl methacrylate‐comethacrylic acid) via miniemulsion polymerization process. The resultant materials were characterized X‐ray diffraction (XRD), Fourier Transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), zeta potential () measurements and vibrating sample magnetometry (VSM). XRD results showed magnetite as the predominant cristalline phase in all samples and that cristallites had nanometric dimensions. Thermogravimetric analysis revealed an increase in polymer thermal stability as a result of magnetite encapsulation. TGA results showed also that the encapsulation efficiency was directly related to nanoparticles s hidrofobicity degree. VSM measurements showed that magnetic polymeric particles were superparamagnetic, so that they may be potentially used for magnetic (bio)separation
Resumo:
Sustainable development is a major challenge in the oil industry and has aroused growing interest in research to obtain materials from renewable sources. Carboxymethylcellulose (CMC) is a polysaccharide derived from cellulose and becomes attractive because it is water-soluble, renewable, biodegradable and inexpensive, as well as may be chemically modified to gain new properties. Among the derivatives of carboxymethylcellulose, systems have been developed to induce stimuli-responsive properties and extend the applicability of multiple-responsive materials. Although these new materials have been the subject of study, understanding of their physicochemical properties, such as viscosity, solubility and particle size as a function of pH and temperature, is still very limited. This study describes systems of physical blends and copolymers based on carboxymethylcellulose and poly (N-isopropylacrylamide) (PNIPAM), with different feed percentage compositions of the reaction (25CMC, 50CMC e 75CMC), in aqueous solution. The chemical structure of the polymers was investigated by infrared and CHN elementary analysis. The physical blends were analyzed by rheology and the copolymers by UV-visible spectroscopy, small-angle X-ray scattering (SAXS), dynamic light scattering (DLS) and zeta potential. CMC and copolymer were assessed as scale inhibitors of calcium carbonate (CaCO3) using dynamic tube blocking tests and chemical compatibility tests, as well as scanning electron microscopy (SEM). Thermothickening behavior was observed for the 50 % CMC_50 % PNIPAM and 25 % CMC_75 % PNIPAM physical blends in aqueous solution at concentrations of 6 and 2 g/L, respectively, depending on polymer concentration and composition. For the copolymers, the increase in temperature and amount of PNIPAM favored polymer-polymer interactions through hydrophobic groups, resulting in increased turbidity of polymer solutions. Particle size decreased with the rise in copolymer PNIPAM content as a function of pH (3-12), at 25 °C. Larger amounts of CMC result in a stronger effect of pH on particle size, indicating pH-responsive behavior. Thus, 25CMC was not affected by the change in pH, exhibiting similar behavior to PNIPAM. In addition, the presence of acidic or basic additives influenced particle size, which was smaller in the presence of the additives than in distilled water. The results of zeta potential also showed greater variation for polymers in distilled water than in the presence of acids and bases. The lower critical solution temperature (LCST) of PNIPAM determined by DLS corroborated the value obtained by UV-visible spectroscopy. SAXS data for PNIPAM and 50CMC indicated phase transition when the temperature increased from 32 to 34 °C. A reduction in or absence of electrostatic properties was observed as a function of increased PNIPAM in copolymer composition. Assessment of samples as scale inhibitors showed that CMC performed better than the copolymers. This was attributed to the higher charge density present in CMC. The SEM micrographs confirmed morphological changes in the CaCO3 crystals, demonstrating the scale inhibiting potential of these polymers
Resumo:
Dispersions composed of polyelectrolyte complexes based on chitosan and poly(methacrylic acid), PMAA, were obtained by the dropping method and template polymerization. The effect of molecular weight of PMAA and ionic strength on the formation of chitosan/poly(methacrylic acid), CS/PMAA, complexes was evaluated using the dropping method. The increase in molecular weight of PMAA inhibited the formation of insoluble complexes, while the increase in ionic strength first favored the formation of the complex followed by inhibiting it at higher concentrations. The polyelectrolyte complexation was strongly dependent on macromolecular dimensions, both in terms of molecular weight and of coil expansion/contraction driven by polyelectrolyte effect. The resultant particles from dropping method and template polymerization were characterized as having regions with different charge densities: chitosan predominating in the core and poly(methacrylic acid) at the surface, the particles being negatively charged, as a consequence. Albumin was adsorbed on templatepolymerized CS/PMAA complexes (after crosslinking with glutardialdehyde) and pH was controlled in order to obtain two conditions: (i) adsorption of positively charged albumin, and (ii) adsorption of albumin at its isoelectric point. Adsorption isotherms and zeta potential measurements showed that albumin adsorption was controlled by hydrogen bonding/van der Waals interactions and that brushlike structures may enhance adsorption of albumin on these particles
Resumo:
This work has the main objective to obtain nano and microcrystals of cellulose, extracted from the pineapple leaf fibres (PALF), as reinforcement for the manufacture of biocomposite films with polymeric matrices of Poly(vinyl alcohol) (PVA) and Poly(lactic acid) (PLA). The polymer matrices and the nano and microcrystals of cellulose were characterised by means of TGA, FTIR and DSC. The analysis was performed on the pineapple leaves to identify the macro and micronutrients. The fibers of the leaves of the pineapple were extracted in a desfibradeira mechanical. The PALF extracted were washed to remove washable impurities and subsequently treated with sodium hydroxide (NaOH) and sodium hypochlorite (NaClO) in the removal of impurities, such as fat, grease, pectates, pectin and lignin. The processed PALF fibers were hydrolysed in sulfuric acid (H2SO4) at a concentration of 13.5 %, to obtain nano and microcrystals of cellulose. In the manufacture of biocomposite films, concentrations of cellulose, 0 %, 1 %, 3 %, 6 %, 9% and 12% were used as reinforcement to the matrices of PVA and PLA. The PVA was dissolved in distilled water at 80 ± 5 oC and the PLA was dissolved in dichloromethane at room temperature. The manufacture of biocompósitos in the form of films was carried out by "casting". Tests were carried out to study the water absorption by the films and mechanical test of resistance to traction according to ASTM D638-10 with a velocity of 50 mm/min.. Chi-square statistical test was used to check for the existence of significant differences in the level of 0.05: the lengths of the PALF, lengths of the nano and microcrystals of cellulose and the procedures used for the filtration using filter syringe of 0.2 μm or filtration and centrifugation. The hydrophilicity of biocompósitos was analysed by measuring the contact angle and the thickness of biocompósitos were compared as well as the results of tests of traction. Statistical T test - Student was also applied with the significance level (0.05). In biodegradation, Sturm test of standard D5209 was used. Nano and microcrystals of cellulose with lengths ranging from 7.33 nm to 186.17 nm were found. The PVA films showed average thicknesses of 0.153 μm and PLA 0.210 μm. There is a strong linear correlation directly proportional between the traction of the films of PVA and the concentration of cellulose in the films (composite) (0,7336), while the thickness of the film was correlated in 0.1404. Nano and microcrystals of cellulose and thickness together, correlated to 0.8740. While the correlation between the cellulose content and tensile strength was weak and inversely proportional (- 0,0057) and thickness in -0.2602, totaling -0,2659 in PLA films. This can be attributed to the nano and microcrystals of cellulose not fully adsorbed to the PLA matrix. In the comparison of the results of the traction of the two polymer matrices, the nano and microcrystals have helped in reducing the traction of the films (composite) of PLA. There was still the degradation of the film of PVA, within a period of 20 days, which was not seen in the PLA film, on the other hand, the observations made in the literature, the average time to start the degradation is above 60 days. What can be said that the films are biodegradable composites, with hydrophilicity and the nano and microcrystals of cellulose, contribute positively in the improvement of the results of polymer matrices used.
Resumo:
Polyelectrolyte complexes (PECs) nanoparticles were prepared using chitosan and sodium polymethacrylate. The complex formation was investigated using turbidimetry, conductometry, viscometry, and dynamic light scattering. The presence of excess positive charges was evidenced by zeta potential measurements. The particle diameter was characterized by dynamic light scattering and the morphology by atomic force microscopy. In all experiments an abrupt change in behavior was observed at a carboxyl:amino molar ratio around 0.7−0.8. Those changes in behavior were related to a proposed mechanism of complex formation based on the decrease of macromolecular dimensions of soluble polyelectrolyte complex clusters, followed by phase segregation
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.
Resumo:
Poly(methyl methacrylate)/clay nanocomposites were prepared by melt mixing using a montmorillonite-rich clay (MMT). The clay in natura was treated with acrylic acid to facilitate the dispersion in the polymer matrix. A masterbatch of PMMA/clay was prepared and combined with the pure PMMA and then subjected to extrusion process using singlescrew and twin-screw extruders followed by injection. Nanocomposites were processed with clay contents of 1, 3, 5 and 8 wt.%. The effect of shear processing on the morphology of the nanocomposites was evaluated by XRD, SEM and TEM. Thermal and mechanical properties of the nanocomposites were investigated through TGA, DSC, HDT, VICAT, tensile and impact tests, to evaluate the effect of the addition of clay to the PMMA matrix. Flammability tests were also conducted to investigate the effect of the addition of clay on the flame retardation properties. SEM images of the nanocomposites indicated the presence of clay agglomerates, which resulted in the reduction of properties such as thermal stability, mechanical strength and impact resistance, and increased the rate of burning for materials processed by both extrusion routes
Resumo:
Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET
Resumo:
Currently new polymeric materials have been developed to replace other of traditionally materials classes. The use of dyes allows to expand and to diversify the applications in the polymeric materials development. In this work the behavior and ability of azo dyes Disperse Blue 79 (DB79) and Disperse Red 73 (DR73) on poly(methyl methacrylate) (PMMA) were studied. Two types of mixtures were used in the production of masterbatches: 1) rheometer 2) solution. Processing by extrusion-blow molding of PMMA was carried out in order to evaluate the applications of polymeric films. Thermal analysis were performed by thermogravimetry to evaluate polymer and azo dyes thermal stability. Colorimetric analysis were obtained through monitoring the spectral variations associated with sys/trans/anti azo dyes isomerization process Colorimetric data were treated and evaluated in accordance to the color system RGB and CIEL*ab, by monitoring the color change as function of time. Mechanical properties, characterized by tensile tests, were evaluated and correlated with the presence and content of azo dyes in the samples. Analyses by scanning electronic microscopy (SEM) were performed on the surfaces of samples to check the azo dye dispersion after the mixing process. It was concluded that the production of PMMA/azo dyes is possible and feasible, and the mixtures produced had synergy of properties for use in various applications
Resumo:
The growing concern with the solid residues management, observed in the last decade, due to its huge amount and impact, has motivated the search for recycling processes, where these residues can be reprocessed to generate new products, enlarging the cycle of materials and energy which are present. Among the polymeric residues, there is poly (ethylene terephthalate) (PET). PET is used in food packaging, preferably in the bottling of carbonated beverages. The reintegration of post-consumer PET in half can be considered a productive action mitigation of environmental impacts caused by these wastes and it is done through the preparation of several different products at the origin, i.e. food packaging, with recycling rates increasing to each year. This work focused on the development and characterization mechanical, thermal, thermo-mechanical, dynamic mechanical thermal and morphology of the pure recycled PET and recycled PET composites with glass flakes in the weight fraction of 5%, 10% and 20% processed in a single screw extruder, using the following analytical techniques: thermogravimetry (TG), differential scanning calorimetry (DSC), tensile, Izod impact, Rockwell hardness, Vicat softening temperature, melt flow rate, burn rate, dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The results of thermal analysis and mechanical properties leading to a positive evaluation, because in the thermograms the addition of glass flakes showed increasing behavior in the initial temperatures of thermal decomposition and melting crystalline, Furthermore was observed growing behavior in the mechanical performance of polymer composites, whose morphological structure was observed by SEM, verifying a good distribution of glass flakes, showing difference orientation in the center and in the surface layer of test body of composites with 10 and 20% of glass flakes. The results of DMTA Tg values of the composites obtained from the peak of tan ä showed little reductions due to poor interfacial adhesion between PET and recycled glass flakes.
Resumo:
Currently the search for new materials with properties suitable for specific applications has increased the number of researches that aim to address market needs. The poly (methyl methacrylate) (PMMA) is one of the most important polymers of the family of polyacrylates and polymethacrylates, especially for its unique optical properties and weathering resistance, and exceptional hardness and gloss. The development of polymer composites by the addition of inorganic fillers to the PMMA matrix increases the potential use of this polymer in various fields of application. The most commonly used inorganic fillers are particles of silica (SiO2), modified clays, graphite and carbon nanotubes. The main objective of this work is the development of PMMA/SiO2 composites at different concentrations of SiO2, for new applications as engineering plastics. The composites were produced by extrusion of tubular film, and obtained via solution for application to commercial PMMA plates, and also by injection molding, for improved the abrasion and scratch resistance of PMMA without compromising transparency. The effects of the addition of silica particles in the polymer matrix properties were evaluated by the maximum tensile strength, hardness, abrasion and scratch resistance, in addition to preliminary characterization by torque rheometry and melt flow rate. The results indicated that it is possible to use silica particles in a PMMA matrix, and a higher silica concentration produced an increase of the abrasion and scratch resistance, hardness, and reduced tensile strength
Resumo:
Studies indicate that a variation in the degree of crystallinity of the components of a polymer blend influences the mechanical properties. This variation can be obtained by subjecting the blend to heat treatments that lead to changes in the spherulitic structure. The aim of this work is to analyze the influence of different heat treatments on the variation of the degree of crystallinity and to establish a relationship between this variation and the mechanical behavior of poly(methyl methacrylate)/poly(ethylene terephthalate) recycled (PMMA / PETrec) with and without the use of compatibilizer agent poly(methyl methacrylate-al-glycidyl methacrylate-al-ethyl acrylate) (MMAGMA- EA). All compositions were subjected to two heat treatments. T1 heat treatment the samples were treated at 130 ° C for 30 minutes and cooled in air. In T2, the samples were treated at 230 ° C for 5 minutes and cooled to approximately -10 ° C. The variation of the degree of crystallinity was determined by the proportional relationship between crystallinity and density, with the density measured by pycnometry. The mechanical behavior was verified by tensile tests with and without the presence of notches and pre-cracks, and by method of fracture toughness in plane strain (KIC). We used the scanning electron microscopy (SEM) to analyze the fracture surface of the samples. The compositions subjected to heat treatment T1, in general, showed an increase in the degree of crystallinity in tensile strength and a tendency to decrease in toughness, while compositions undergoing treatment T2 showed that the opposite behavior. Therefore, this work showed that heat treatment can give a polymer blend further diversity of its properties, this being caused by changes in the crystal structure
Resumo:
This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp)