18 resultados para mutagenic
Resumo:
Fucan is a term used to denominate a family of sulfated polysaccharides rich in L-fucose. They are extracted mainly from the extracellular matrix of brown algae and echinoderms. The brown alga Spatoglossum schröederi (Dictyotaceae) has three heterofucans named A, B and C. Our research group have been extracted non anticoagulant heterofucan from S. schröederi which possess antithrombotic activity in vivo. However, their toxicity in vitro and in vivo has not yet been determined. For the results in toxicity in vitro, we observed that the fucan A at 20, 500 and 1000 μg/plate showed no mutagenic activity in Kado test (Microsuspension), when the bacterial strains TA97a, TA98, TA100 and TA102, with and without S9 were used. The comet assay showed that fucan A (from 20 to 1000 μg/mL) did not cause any genotoxic effect on CHO cells. There was no damage to the DNA of these cells, as evidenced by the tail length and tail moment, which were similar to that found for the negative control. The fucan A from S. schröederi was administered at 20 μg/g of rat (dose which it showed high antithrombotic activity) during two months. After that, the animals were killed and examined. The data showed that fucan A did not cause any change in biochemistry and hematological parameters, as well as, in the morphology and size of the rat s organs analyzed. In conclusion, this study indicates that fucan is a compound with potential pharmacological that has no toxicity
Resumo:
Tangara da Serra is located on southwestern Mato Grosso and is found to be on the route of pollutants dispersion originated in the Legal Amazon s deforestation area. This region has also a wide area of sugarcane culture, setting this site quite exposed to atmospheric pollutants. The objective of this work was to evaluate the genotoxicity of three different concentrations of organic particulate matter which was collected from August through December / 2008 in Tangara da Serra, using micronucleus test in Tradescantia pallida (Trad-MCN). The levels of particulate matter less than 10μm (MP10) and black carbon (BC) collected on the Teflon and polycarbonate filters were determined as well. Also, the alkanes and polycyclic aromatic hydrocarbons (PAHs) were identified and quantified on the samples from the burning period by gas chromatography detector with flame ionization detection (GC-FID). The results from the analyzing of alkanes indicate an antropic influence. Among the PAHs, the retene was the one found on the higher quantity and it is an indicator of biomass burning. The compounds indene(1,2,3-cd)pyrene and benzo(k)fluoranthene were identified on the samples and are considered to be potentially mutagenic and carcinogenic. By using Trad-MCN, it was observed a significant increase on the micronucleus frequency during the burning period, and this fact can be related to the mutagenic PAHs which were found on such extracts. When the period of less burnings is analyzed and compared to the negative control group, it was noted that there was no significant difference on the micronuclei rate. On the other hand, when the higher burning period is analyzed, statistically significant differences were evident. This study showed that the Trad-MCN was sensible and efficient on evaluating the genotoxicity potencial of organic matter from biomass burning, and also, emphasizes the importance of performing a chemical composition analysis in order to achieve a complete diagnosis on environmental risk control
Resumo:
The genome of all organisms constantly suffers the influence of mutagenic factors from endogenous and/or exogenous origin, which may result in damage for the genome. In order to keep the genome integrity there are different DNA repair pathway to detect and correct these lesions. In relation to the plants as being sessile organisms, they are exposed to this damage frequently. The Base Excision DNA Repair (BER) is responsible to detect and repair oxidative lesions. Previous work in sugarcane identified two sequences that were homologous to Arabidopsis thaliana: ScARP1 ScARP3. These two sequences were homologous to AP endonuclease from BER pathway. Then, the aim of this work was to characterize these two sequence using different approaches: phylogenetic analysis, in silico protein organelle localization and by Nicotiana tabacum transgenic plants with overexpression cassette. The in silico data obtained showed a duplication of this sequence in sugarcane and Poaceae probably by a WGD event. Furthermore, in silico analysis showed a new localization in nuclei for ScARP1 protein. The data obtained with transgenic plants showed a change in development and morphology. Transgenic plants had slow development when compared to plants not transformed. Then, these results allowed us to understand better the potential role of this sequence in sugarcane and in plants in general. More work is important to be done in order to confirm the protein localization and protein characterization for ScARP1 and ScARP3