25 resultados para modelo computacional


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a modelling and identification method for a wheeled mobile robot, including the actuator dynamics. Instead of the classic modelling approach, where the robot position coordinates (x,y) are utilized as state variables (resulting in a non linear model), the proposed discrete model is based on the travelled distance increment Delta_l. Thus, the resulting model is linear and time invariant and it can be identified through classical methods such as Recursive Least Mean Squares. This approach has a problem: Delta_l can not be directly measured. In this paper, this problem is solved using an estimate of Delta_l based on a second order polynomial approximation. Experimental data were colected and the proposed method was used to identify the model of a real robot

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a computer simulator for sucker rod pumped vertical wells. The simulator is able to represent the dynamic behavior of the systems and the computation of several important parameters, allowing the easy visualization of several pertinent phenomena. The use of the simulator allows the execution of several tests at lower costs and shorter times, than real wells experiments. The simulation uses a model based on the dynamic behavior of the rod string. This dynamic model is represented by a second order partial differencial equation. Through this model, several common field situations can be verified. Moreover, the simulation includes 3D animations, facilitating the physical understanding of the process, due to a better visual interpretation of the phenomena. Another important characteristic is the emulation of the main sensors used in sucker rod pumping automation. The emulation of the sensors is implemented through a microcontrolled interface between the simulator and the industrial controllers. By means of this interface, the controllers interpret the simulator as a real well. A "fault module" was included in the simulator. This module incorporates the six more important faults found in sucker rod pumping. Therefore, the analysis and verification of these problems through the simulator, allows the user to identify such situations that otherwise could be observed only in the field. The simulation of these faults receives a different treatment due to the different boundary conditions imposed to the numeric solution of the problem. Possible applications of the simulator are: the design and analysis of wells, training of technicians and engineers, execution of tests in controllers and supervisory systems, and validation of control algorithms

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work purposes the application of a methodology to optimize the implantation cost of an wind-solar hybrid system for oil pumping. The developed model is estimated the implantation cost of system through Multiple Linear Regression technique, on the basis of the previous knowledge of variables: necessary capacity of storage, total daily energy demand, wind power, module power and module number. These variables are gotten by means of sizing. The considered model not only can be applied to the oil pumping, but also for any other purposes of electric energy generation for conversion of solar, wind or solar-wind energy, that demand short powers. Parametric statistical T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind, F by Snedecor in the variance analysis to test if the coefficients of the considered model are significantly different of zero and test not-parametric statistical by Friedman, toverify if there is difference in the system cost, by being considered the photovoltaic module powers. In decision of hypothesis tests was considered a 5%-significant level. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 3 HP. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 5 HP only to wind speed of 4m/s and 6 m/s in wind of 3 m, 4m and 5 m of diameter. There was not significant difference in costs to diameters of winds of 3 m and 4m. The mathematical model and the computational program may be used to others applications which require electrical between 2.250 W and 3.750 W. A computational program was developed to assist the study of several configurations that optimizes the implantation cost of an wind-solar system through considered mathematical model

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A matemática intervalar é uma teoria matemática originada na década de 60 com o objetivo de responder questões de exatidão e eficiência que surgem na prática da computação científica e na resolução de problemas numéricos. As abordagens clássicas para teoria da computabilidade tratam com problemas discretos (por exemplo, sobre os números naturais, números inteiros, strings sobre um alfabeto finito, grafos, etc.). No entanto, campos da matemática pura e aplicada tratam com problemas envolvendo números reais e números complexos. Isto acontece, por exemplo, em análise numérica, sistemas dinâmicos, geometria computacional e teoria da otimização. Assim, uma abordagem computacional para problemas contínuos é desejável, ou ainda necessária, para tratar formalmente com computações analógicas e computações científicas em geral. Na literatura existem diferentes abordagens para a computabilidade nos números reais, mas, uma importante diferença entre estas abordagens está na maneira como é representado o número real. Existem basicamente duas linhas de estudo da computabilidade no contínuo. Na primeira delas uma aproximação da saída com precisão arbitrária é computada a partir de uma aproximação razoável da entrada [Bra95]. A outra linha de pesquisa para computabilidade real foi desenvolvida por Blum, Shub e Smale [BSS89]. Nesta aproximação, as chamadas máquinas BSS, um número real é visto como uma entidade acabada e as funções computáveis são geradas a partir de uma classe de funções básicas (numa maneira similar às funções parciais recursivas). Nesta dissertação estudaremos o modelo BSS, usado para se caracterizar uma teoria da computabilidade sobre os números reais e estenderemos este para se modelar a computabilidade no espaço dos intervalos reais. Assim, aqui veremos uma aproximação para computabilidade intervalar epistemologicamente diferente da estudada por Bedregal e Acióly [Bed96, BA97a, BA97b], na qual um intervalo real é visto como o limite de intervalos racionais, e a computabilidade de uma função intervalar real depende da computabilidade de uma função sobre os intervalos racionais

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present a mathematical and computational modeling of electrokinetic phenomena in electrically charged porous medium. We consider the porous medium composed of three different scales (nanoscopic, microscopic and macroscopic). On the microscopic scale the domain is composed by a porous matrix and a solid phase. The pores are filled with an aqueous phase consisting of ionic solutes fully diluted, and the solid matrix consists of electrically charged particles. Initially we present the mathematical model that governs the electrical double layer in order to quantify the electric potential, electric charge density, ion adsorption and chemical adsorption in nanoscopic scale. Then, we derive the microscopic model, where the adsorption of ions due to the electric double layer and the reactions of protonation/ deprotanaç~ao and zeta potential obtained in modeling nanoscopic arise in microscopic scale through interface conditions in the problem of Stokes and Nerst-Planck equations respectively governing the movement of the aqueous solution and transport of ions. We developed the process of upscaling the problem nano/microscopic using the homogenization technique of periodic structures by deducing the macroscopic model with their respectives cell problems for effective parameters of the macroscopic equations. Considering a clayey porous medium consisting of kaolinite clay plates distributed parallel, we rewrite the macroscopic model in a one-dimensional version. Finally, using a sequential algorithm, we discretize the macroscopic model via the finite element method, along with the interactive method of Picard for the nonlinear terms. Numerical simulations on transient regime with variable pH in one-dimensional case are obtained, aiming computational modeling of the electroremediation process of clay soils contaminated

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The northern portion of the Rio Grande do Norte State is characterized by intense coastal dynamics affecting areas with ecosystems of moderate to high environmental sensitivity. In this region are installed the main socioeconomic activities of RN State: salt industry, shrimp farm, fruit industry and oil industry. The oil industry suffers the effects of coastal dynamic action promoting problems such as erosion and exposure of wells and pipelines along the shore. Thus came the improvement of such modifications, in search of understanding of the changes which causes environmental impacts with the purpose of detecting and assessing areas with greater vulnerability to variations. Coastal areas under influence oil industry are highly vulnerable and sensitive in case of accidents involving oil spill in the vicinity. Therefore, it was established the geoenvironmental monitoring of the region with the aim of evaluating the entire coastal area evolution and check the sensitivity of the site on the presence of oil. The goal of this work was the implementation of a computer system that combines the needs of insertion and visualization of thematic maps for the generation of Environmental Vulnerability maps, using techniques of Business Intelligence (BI), from vector information previously stored in the database. The fundamental design interest was to implement a more scalable system that meets the diverse fields of study and make the appropriate system for generating online vulnerability maps, automating the methodology so as to facilitate data manipulation and fast results in cases of real time operational decision-making. In database development a geographic area was established the conceptual model of the selected data and Web system was done using the template database PostgreSQL, PostGis spatial extension, Glassfish Web server and the viewer maps Web environment, the GeoServer. To develop a geographic database it was necessary to generate the conceptual model of the selected data and the Web system development was done using the PostgreSQL database system, its spatial extension PostGIS, the web server Glassfish and GeoServer to display maps in Web

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3D Reconstruction is the process used to obtain a detailed graphical model in three dimensions that represents some real objectified scene. This process uses sequences of images taken from the scene, so it can automatically extract the information about the depth of feature points. These points are then highlighted using some computational technique on the images that compose the used dataset. Using SURF feature points this work propose a model for obtaining depth information of feature points detected by the system. At the ending, the proposed system extract three important information from the images dataset: the 3D position for feature points; relative rotation and translation matrices between images; the realtion between the baseline for adjacent images and the 3D point accuracy error found.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The developed study proposes a new computer modeling efficient and easy to apply in usual project situations to evaluate the interaction between masonry panels and support structure. The proposed model simulates the behavior of the wall exclusively using frame finite elements, thus compounding an equivalent frame. The validation was performed in two ways: firstly, through the analysis of various panels of generic plans, comparing the results obtained from equivalent frame model with the ones from a reference model, which uses shell finite elements in discretization of the walls; and in a second step, comparing with the results of the experimental model of Rosenhaupt. The analyzes considered the linear elastic behavior for materials and consisted basically in the evaluation of vertical displacements and efforts in support beams, and tensions at the base of walls. Was also evaluated, from flat and threedimensional modeling of some walls from a real project, important aspects of the wall-beam interaction, e.g.: the presence of openings of doors and windows, arranged in any position; conditions of support and linking of beams; interference of moorings between walls; and consideration of wind action. The analysis of the achieved results demonstrated the efficiency of the proposed modeling, since they have very similar aspects in the distribution of stresses and efforts, always with intensities slightly larger than those of the reference and experimental models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior