31 resultados para image processing--digital techniques
Resumo:
This work presents the results of a survey in oil-producing region of the Macau City, northern coast of Rio Grande do Norte. All work was performed under the Project for Monitoring Environmental Change and the Influence of Hydrodynamic forcing on Morphology Beach Grass Fields, Serra Potiguar in Macau, with the support of the Laboratory of Geoprocessing, linked to PRH22 - Training Program in Geology Geophysics and Information Technology Oil and Gas - Department of Geology/CCET/UFRN and the Post-Graduation in Science and Engineering Oil/PPGCEP/UFRN. Within the economic-ecological context, this paper assesses the importance of mangrove ecosystem in the region of Macau and its surroundings as well as in the following investigative exploration of potential areas for projects involving reforestation and / or Environmental Restoration. At first it was confirmed the ecological potential of mangrove forests, with primary functions: (i) protection and stabilization of the shoreline, (ii) nursery of marine life, and (iii) source of organic matter to aquatic ecosystems, (iv) refuge of species, among others. In the second phase, using Landsat imagery and techniques of Digital Image Processing (DIP), I came across about 18,000 acres of land that can be worked on environmental projects, being inserted in the rules signed the Kyoto Protocol to the market carbon. The results also revealed a total area of 14,723.75 hectares of activity of shrimp production and salting that can be harnessed for the social, economic and environmental potential of the region, considering that over 60% of this area, ie, 8,800 acres, may be used in the planting of the genus Avicennia considered by the literature that the species best sequesters atmospheric carbon, reaching a mean value of 59.79 tons / ha of mangrove
Resumo:
AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008
Resumo:
In this work, spoke about the importance of image compression for the industry, it is known that processing and image storage is always a challenge in petrobrás to optimize the storage time and store a maximum number of images and data. We present an interactive system for processing and storing images in the wavelet domain and an interface for digital image processing. The proposal is based on the Peano function and wavelet transform in 1D. The storage system aims to optimize the computational space, both for storage and for transmission of images. Being necessary to the application of the Peano function to linearize the images and the 1D wavelet transform to decompose it. These applications allow you to extract relevant information for the storage of an image with a lower computational cost and with a very small margin of error when comparing the images, original and processed, ie, there is little loss of quality when applying the processing system presented . The results obtained from the information extracted from the images are displayed in a graphical interface. It is through the graphical user interface that the user uses the files to view and analyze the results of the programs directly on the computer screen without the worry of dealing with the source code. The graphical user interface, programs for image processing via Peano Function and Wavelet Transform 1D, were developed in Java language, allowing a direct exchange of information between them and the user
Resumo:
Image segmentation is one of the image processing problems that deserves special attention from the scientific community. This work studies unsupervised methods to clustering and pattern recognition applicable to medical image segmentation. Natural Computing based methods have shown very attractive in such tasks and are studied here as a way to verify it's applicability in medical image segmentation. This work treats to implement the following methods: GKA (Genetic K-means Algorithm), GFCMA (Genetic FCM Algorithm), PSOKA (PSO and K-means based Clustering Algorithm) and PSOFCM (PSO and FCM based Clustering Algorithm). Besides, as a way to evaluate the results given by the algorithms, clustering validity indexes are used as quantitative measure. Visual and qualitative evaluations are realized also, mainly using data given by the BrainWeb brain simulator as ground truth
Resumo:
This work proposes a method to localize a simple humanoid robot, without embedded sensors, using images taken from an extern camera and image processing techniques. Once the robot is localized relative to the camera, supposing we know the position of the camera relative to the world, we can compute the position of the robot relative to the world. To make the camera move in the work space, we will use another mobile robot with wheels, which has a precise locating system, and will place the camera on it. Once the humanoid is localized in the work space, we can take the necessary actions to move it. Simultaneously, we will move the camera robot, so it will take good images of the humanoid. The mainly contributions of this work are: the idea of using another mobile robot to aid the navigation of a humanoid robot without and advanced embedded electronics; chosing of the intrinsic and extrinsic calibration methods appropriated to the task, especially in the real time part; and the collaborative algorithm of simultaneous navigation of the robots
Resumo:
Image compress consists in represent by small amount of data, without loss a visual quality. Data compression is important when large images are used, for example satellite image. Full color digital images typically use 24 bits to specify the color of each pixel of the Images with 8 bits for each of the primary components, red, green and blue (RGB). Compress an image with three or more bands (multispectral) is fundamental to reduce the transmission time, process time and record time. Because many applications need images, that compression image data is important: medical image, satellite image, sensor etc. In this work a new compression color images method is proposed. This method is based in measure of information of each band. This technique is called by Self-Adaptive Compression (S.A.C.) and each band of image is compressed with a different threshold, for preserve information with better result. SAC do a large compression in large redundancy bands, that is, lower information and soft compression to bands with bigger amount of information. Two image transforms are used in this technique: Discrete Cosine Transform (DCT) and Principal Component Analysis (PCA). Primary step is convert data to new bands without relationship, with PCA. Later Apply DCT in each band. Data Loss is doing when a threshold discarding any coefficients. This threshold is calculated with two elements: PCA result and a parameter user. Parameters user define a compression tax. The system produce three different thresholds, one to each band of image, that is proportional of amount information. For image reconstruction is realized DCT and PCA inverse. SAC was compared with JPEG (Joint Photographic Experts Group) standard and YIQ compression and better results are obtain, in MSE (Mean Square Root). Tests shown that SAC has better quality in hard compressions. With two advantages: (a) like is adaptive is sensible to image type, that is, presents good results to divers images kinds (synthetic, landscapes, people etc., and, (b) it need only one parameters user, that is, just letter human intervention is required
Resumo:
The vision is one of the five senses of the human body and, in children is responsible for up to 80% of the perception of world around. Studies show that 50% of children with multiple disabilities have some visual impairment, and 4% of all children are diagnosed with strabismus. The strabismus is an eye disability associated with handling capacity of the eye, defined as any deviation from perfect ocular alignment. Besides of aesthetic aspect, the child may report blurred or double vision . Ophthalmological cases not diagnosed correctly are reasons for many school abandonments. The Ministry of Education of Brazil points to the visually impaired as a challenge to the educators of children, particularly in literacy process. The traditional eye examination for diagnosis of strabismus can be accomplished by inducing the eye movements through the doctor s instructions to the patient. This procedure can be played through the computer aided analysis of images captured on video. This paper presents a proposal for distributed system to assist health professionals in remote diagnosis of visual impairment associated with motor abilities of the eye, such as strabismus. It is hoped through this proposal to contribute improving the rates of school learning for children, allowing better diagnosis and, consequently, the student accompaniment
Resumo:
A challenge that remains in the robotics field is how to make a robot to react in real time to visual stimulus. Traditional computer vision algorithms used to overcome this problem are still very expensive taking too long when using common computer processors. Very simple algorithms like image filtering or even mathematical morphology operations may take too long. Researchers have implemented image processing algorithms in high parallelism hardware devices in order to cut down the time spent in the algorithms processing, with good results. By using hardware implemented image processing techniques and a platform oriented system that uses the Nios II Processor we propose an approach that uses the hardware processing and event based programming to simplify the vision based systems while at the same time accelerating some parts of the used algorithms
Resumo:
Image segmentation is the process of labeling pixels on di erent objects, an important step in many image processing systems. This work proposes a clustering method for the segmentation of color digital images with textural features. This is done by reducing the dimensionality of histograms of color images and using the Skew Divergence to calculate the fuzzy a nity functions. This approach is appropriate for segmenting images that have colorful textural features such as geological, dermoscopic and other natural images, as images containing mountains, grass or forests. Furthermore, experimental results of colored texture clustering using images of aquifers' sedimentary porous rocks are presented and analyzed in terms of precision to verify its e ectiveness.
Resumo:
The study area is located on the Brazilian Continental Shelf adjacent to Ceará State, inserted in the submerged Potiguar Basin. This area was submitted to extensional efforts during Upper Cretaceous, associated to the begining of the rifting that resulted in African and South American Continent separation. The main goal of this research was to better understand the sedimentary and geomorphological characteristics of the continental shelf adjacent to Fortim, Aracati and Icapuí (Ceará State). The used data base included geophysical (sides scan sonar and bathymetry studies) and sedimentological survey, associated to satellite image processing and interpretation. Inferences about suspended material and longshore drift was possible using satellite images, and differente bedforms were characterized such as: different kinds of dunes (longitudinal, cross and oblique), bioclastic banks, paleochannels, flat and rock bottom. The researched area comprehended about 2509,13 km2, where 6 different sedimentary facies, based on sediment composition and texture, could be recognized, such as: Bioclastic Sand, Siliciclastic Sand, Biosiliciclastic Sand, Bioclastic gravel, Biosiliciclastic sand with granule and gravel, and Silicibioclastic sand with granule and gravel. The integration of bathymetric, satellite image, side scan sonar and sedimentological data allow us a better characterization of this continental shelf area, as to advance in the knowledge of the continental shelf of the state of Ceara, a very important area to the oil industry because of its potential exploration and e exploitation, and to environmental survey as well
Resumo:
Mathematical Morphology presents a systematic approach to extract geometric features of binary images, using morphological operators that transform the original image into another by means of a third image called structuring element and came out in 1960 by researchers Jean Serra and George Matheron. Fuzzy mathematical morphology extends the operators towards grayscale and color images and was initially proposed by Goetherian using fuzzy logic. Using this approach it is possible to make a study of fuzzy connectives, which allows some scope for analysis for the construction of morphological operators and their applicability in image processing. In this paper, we propose the development of morphological operators fuzzy using the R-implications for aid and improve image processing, and then to build a system with these operators to count the spores mycorrhizal fungi and red blood cells. It was used as the hypothetical-deductive methodologies for the part formal and incremental-iterative for the experimental part. These operators were applied in digital and microscopic images. The conjunctions and implications of fuzzy morphology mathematical reasoning will be used in order to choose the best adjunction to be applied depending on the problem being approached, i.e., we will use automorphisms on the implications and observe their influence on segmenting images and then on their processing. In order to validate the developed system, it was applied to counting problems in microscopic images, extending to pathological images. It was noted that for the computation of spores the best operator was the erosion of Gödel. It developed three groups of morphological operators fuzzy, Lukasiewicz, And Godel Goguen that can have a variety applications
Resumo:
The understanding of the occurrence and flow of groundwater in the subsurface is of fundamental importance in the exploitation of water, just like knowledge of all associated hydrogeological context. These factors are primarily controlled by geometry of a certain pore system, given the nature of sedimentary aquifers. Thus, the microstructural characterization, as the interconnectivity of the system, it is essential to know the macro properties porosity and permeability of reservoir rock, in which can be done on a statistical characterization by twodimensional analysis. The latter is being held on a computing platform, using image thin sections of reservoir rock, allowing the prediction of the properties effective porosity and hydraulic conductivity. For Barreiras Aquifer to obtain such parameters derived primarily from the interpretation of tests of aquifers, a practice that usually involves a fairly complex logistics in terms of equipment and personnel required in addition to high cost of operation. Thus, the analysis and digital image processing is presented as an alternative tool for the characterization of hydraulic parameters, showing up as a practical and inexpensive method. This methodology is based on a flowchart work involving sampling, preparation of thin sections and their respective images, segmentation and geometric characterization, three-dimensional reconstruction and flow simulation. In this research, computational image analysis of thin sections of rocks has shown that aquifer storage coefficients ranging from 0,035 to 0,12 with an average of 0,076, while its hydrogeological substrate (associated with the top of the carbonate sequence outcropping not region) presents effective porosities of the order of 2%. For the transport regime, it is evidenced that the methodology presents results below of those found in the bibliographic data relating to hydraulic conductivity, mean values of 1,04 x10-6 m/s, with fluctuations between 2,94 x10-6 m/s and 3,61x10-8 m/s, probably due to the larger scale study and the heterogeneity of the medium studied.
Resumo:
This Thesis main objective is to implement a supporting architecture to Autonomic Hardware systems, capable of manage the hardware running in reconfigurable devices. The proposed architecture implements manipulation, generation and communication functionalities, using the Context Oriented Active Repository approach. The solution consists in a Hardware-Software based architecture called "Autonomic Hardware Manager (AHM)" that contains an Active Repository of Hardware Components. Using the repository the architecture will be able to manage the connected systems at run time allowing the implementation of autonomic features such as self-management, self-optimization, self-description and self-configuration. The proposed architecture also contains a meta-model that allows the representation of the Operating Context for hardware systems. This meta-model will be used as basis to the context sensing modules, that are needed in the Active Repository architecture. In order to demonstrate the proposed architecture functionalities, experiments were proposed and implemented in order to proof the Thesis hypothesis and achieved objectives. Three experiments were planned and implemented: the Hardware Reconfigurable Filter, that consists of an application that implements Digital Filters using reconfigurable hardware; the Autonomic Image Segmentation Filter, that shows the project and implementation of an image processing autonomic application; finally, the Autonomic Autopilot application that consist of an auto pilot to unmanned aerial vehicles. In this work, the applications architectures were organized in modules, according their functionalities. Some modules were implemented using HDL and synthesized in hardware. Other modules were implemented kept in software. After that, applications were integrated to the AHM to allow their adaptation to different Operating Context, making them autonomic.
Resumo:
Lung cancer is one of the most common types of cancer and has the highest mortality rate. Patient survival is highly correlated with early detection. Computed Tomography technology services the early detection of lung cancer tremendously by offering aminimally invasive medical diagnostic tool. However, the large amount of data per examination makes the interpretation difficult. This leads to omission of nodules by human radiologist. This thesis presents a development of a computer-aided diagnosis system (CADe) tool for the detection of lung nodules in Computed Tomography study. The system, called LCD-OpenPACS (Lung Cancer Detection - OpenPACS) should be integrated into the OpenPACS system and have all the requirements for use in the workflow of health facilities belonging to the SUS (Brazilian health system). The LCD-OpenPACS made use of image processing techniques (Region Growing and Watershed), feature extraction (Histogram of Gradient Oriented), dimensionality reduction (Principal Component Analysis) and classifier (Support Vector Machine). System was tested on 220 cases, totaling 296 pulmonary nodules, with sensitivity of 94.4% and 7.04 false positives per case. The total time for processing was approximately 10 minutes per case. The system has detected pulmonary nodules (solitary, juxtavascular, ground-glass opacity and juxtapleural) between 3 mm and 30 mm.
Resumo:
AIRES, Kelson R. T. ; ARAÚJO, Hélder J. ; MEDEIROS, Adelardo A. D. . Plane Detection from Monocular Image Sequences. In: VISUALIZATION, IMAGING AND IMAGE PROCESSING, 2008, Palma de Mallorca, Spain. Proceedings..., Palma de Mallorca: VIIP, 2008