20 resultados para hipersensibilidade ao látex
Resumo:
Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.
Resumo:
Snakebites are a serious public health problem in tropical and subtropical countries and Bothrops genus is responsible for the accidents in Brazil and throughout Latin America (90% of cases). The local effects (pain, edema, hemorrhage and myonecrosis) and systemic (cardiovascular alterations, shock and blood clotting disorders) caused by the venom of Bothrops are due to the numerous protein and non-protein components, which are part of the constitution of the poison. The only form of therapy is scientifically validated antivenom serum therapy which, however, is not effective with respect to local effects produced, risk of immunological reactions, high cost and difficult access in some regions. Thus, the search for new alternatives to serum therapy becomes important, and in this context, many medicinal plants have been highlighted by the popular use as antiophidic. Among these plants, we can mention the species Jatropha mollissima (Euphorbiaceae) which has popular use in traditional medicine as antiophidic, anti-inflammatory, antimicrobial and antipyretic. Therefore, this study aims to evaluate the neutralizing potential of local effects induced by the venom of Bothrops erythromelas and Bothrops jararaca with the aqueous extract of the leaves of J. mollissima. The leaf extracts were prepared by decoction, fractionated (by liquid-liquid partition) and characterized by thin layer chromatography (TLC) and High Performance Liquid Chromatography (HPLC). Antiophidic activity of the extract was evaluated in model of paw edema, peritonitis, bleeding and myotoxicity induced by venoms of B. jararaca and B. erythromelas. In all models, the extract was evaluated by intraperitoneal route at the doses of 50, 100 and 200 mg/kg, administered 30 minutes prior to injection of the venom (pretreatment protocol). Stains suggestive of the presence of flavonoids: apigenin, luteolin, orientin, isoorientin, vitexin and vitexin-2-O-rhamnoside were detected in the extract by co-CCD. By means of HPLC were identified isoorientin, orientin, vitexin and isovitexin. All tested doses of J. mollissima extract reduced the paw edema induced by the venom with intensity similar to dexamethasone. The aqueous extract of J. mollissima leaves on all evaluated doses, inhibited cell migration induced by B. jararaca and B. erythromelas promoting inhibition of recruitment of mononuclear cells and the polymorphonuclear cells. Local bleeding induced by B. jararaca venom was significantly inhibited by the extract. Both venoms were inhibited by the extract in myotoxic activity. These results indicate that the aqueous extract of J. mollissima leaves have snakebite potential, particularly with respect to local effects, which may justify the use of this plant in traditional medicine and complementary therapy as anti-venom serum.
Resumo:
Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.
Resumo:
Steam injection is an oil recovery method accomplished by introducing steam directly into the oil well to the reservoir. The steam causes dilation of the casing, which, after reduction in temperature, tends to return to the initial dimensions: causing the formation of cracks in the cement and loss of hydraulic isolation.. In this context, the type of the SBR latex is used to improve the flexibility of the cement matrix by reducing the amount of fatigue failure. To prevent these failures, the mechanical resistance parameters should be carefully adjusted to well conditions. This work aims to study the mechanical behavior of cement slurry systems additivated with SBR latex for cementing oil wells subject to steam injection. Through the central composite factorial design was studied the behavior of the compressive strength by varying the density of the paste between 1.75 g /cm³ (14.6 lb/ Gal) and 1.89 g/cm³ (15,8lb / Gal), curing time between 4 days and 28 days and concentration of SBR Latex between 0 L / m³ and 534.722 L / m³ (0 gpc and 4 gpc). The results showed that increasing the concentration of SBR latex, within the given ranges, there was a decreased compression resistance and elastic modulus by increasing the elastic deformability of the slurry. From the results it can determine best slurries formulation conditions in oil well cementing operations subject to steam injection.
Resumo:
Oil wells subjected to cyclic steam injection present important challenges for the development of well cementing systems, mainly due to tensile stresses caused by thermal gradients during its useful life. Cement sheath failures in wells using conventional high compressive strength systems lead to the use of cement systems that are more flexible and/or ductile, with emphasis on Portland cement systems with latex addition. Recent research efforts have presented geopolymeric systems as alternatives. These cementing systems are based on alkaline activation of amorphous aluminosilicates such as metakaolin or fly ash and display advantageous properties such as high compressive strength, fast setting and thermal stability. Basic geopolymeric formulations can be found in the literature, which meet basic oil industry specifications such as rheology, compressive strength and thickening time. In this work, new geopolymeric formulations were developed, based on metakaolin, potassium silicate, potassium hydroxide, silica fume and mineral fiber, using the state of the art in chemical composition, mixture modeling and additivation to optimize the most relevant properties for oil well cementing. Starting from molar ratios considered ideal in the literature (SiO2/Al2O3 = 3.8 e K2O/Al2O3 = 1.0), a study of dry mixtures was performed,based on the compressive packing model, resulting in an optimal volume of 6% for the added solid material. This material (silica fume and mineral fiber) works both as an additional silica source (in the case of silica fume) and as mechanical reinforcement, especially in the case of mineral fiber, which incremented the tensile strength. The first triaxial mechanical study of this class of materials was performed. For comparison, a mechanical study of conventional latex-based cementing systems was also carried out. Regardless of differences in the failure mode (brittle for geopolymers, ductile for latex-based systems), the superior uniaxial compressive strength (37 MPa for the geopolymeric slurry P5 versus 18 MPa for the conventional slurry P2), similar triaxial behavior (friction angle 21° for P5 and P2) and lower stifness (in the elastic region 5.1 GPa for P5 versus 6.8 GPa for P2) of the geopolymeric systems allowed them to withstand a similar amount of mechanical energy (155 kJ/m3 for P5 versus 208 kJ/m3 for P2), noting that geopolymers work in the elastic regime, without the microcracking present in the case of latex-based systems. Therefore, the geopolymers studied on this work must be designed for application in the elastic region to avoid brittle failure. Finally, the tensile strength of geopolymers is originally poor (1.3 MPa for the geopolymeric slurry P3) due to its brittle structure. However, after additivation with mineral fiber, the tensile strength became equivalent to that of latex-based systems (2.3 MPa for P5 and 2.1 MPa for P2). The technical viability of conventional and proposed formulations was evaluated for the whole well life, including stresses due to cyclic steam injection. This analysis was performed using finite element-based simulation software. It was verified that conventional slurries are viable up to 204ºF (400ºC) and geopolymeric slurries are viable above 500ºF (260ºC)