22 resultados para heavy metal oxides
Resumo:
Leather tanneries generate effluents with high content of heavy metals, especially chromium, which is used in the mineral tanning process. Microemulsions have been studied in the extraction of heavy metals from aqueous solutions. Considering the problems related with the sediment resulting from the tanning process, due to its high content in chromium, in this work this sediment was characterized and microemulsion systems were applied for chromium removal. The extraction process consists in the removal of heavy metal ions present in an aqueous feeding solution (acid digestion solution) by a microemulsion system. First three different solid sludge digestion methods were evaluated, being chosen the method with higher digestion capacity. For this digestion method, seeking its optimization, was evaluated the influence of granule size, temperature and digestion time. Experimental results showed that the method proposed by USEPA (Method A) was the most efficient one, being obtained 95.77% of sample digestion. Regarding to the evaluated parameters, the best results were achieved at 95°C, 14 Mesh granule size, and 60 minutes digestion time. For chromium removal, three microemulsion extraction methods were evaluated: Method 1, in a Winsor II region, using as aqueous phase the acid digestion solution; Method 2, in a Winsor IV region, being obtained by the addition of the acid digestion solution to a microemulsion phase, whose aqueous phase is distilled water, until the formation of Winsor II system; and Method 3, in a Winsor III region, consisting in the formation of a Winsor III region using as aqueous phase the acid digestion solution, diluted in NaOH 0.01N. Seeking to optimize the extraction process only Method 1 (Systems I, II, and VIII) and Method 2 (System IX) were evaluated, being chosen points inside the interest regions (studied domains) to study the influence of contact time and pH in the extraction percentiles. The studied systems present the following compositions: System I: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase 2% NaCl solution; System II: Aqueous phase Acid digestion solution with pH adjusted using KOH (pH 3.5); System VIII: Aqueous phase - Acid digestion solution (pH 0.06); and System IX Aqueous phase Distilled water (pH 10.24), the other phases of Systems II, VIII and IX are similar to System I. Method 2 showed to be the more efficient one regarding chromium extraction percentile (up to 96.59% - pH 3.5). Considering that with Method 2 the microemulsion region only appears in the Winsor II region, it was studied Method 3 (System X) for the evaluation and characterization of a triphasic system, seeking to compare with a biphases system. System X is composed by: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase Acid digestion solution diluted with water and with its pH adjusted using 0.01N NaOH solution. The biphasic and triphasic microemulsion systems were analyzed regarding its viscosity, extraction efficiency and drop effective diameter. The experimental results showed that for viscosity studies the obtained values were low for all studied systems, the diameter of the drop is smaller in the Winsor II region, with 15.5 nm, reaching 46.0 nm in Winsor III region, being this difference attributed to variations in system compositions and micelle geometry. In chromium extraction, these points showed similar results, being achieved 99.76% for Winsor II system and 99.62% for Winsor III system. Winsor III system showed to be more efficient due to the obtaining of a icroemulsion with smaller volume, with the possibility to recover the oil phase in excess, and the use of a smaller proportion of surfactant and cosurfactant (C/S)
Resumo:
Oxygen carriers are metal oxides which have the ability to oxidize and reduce easily by various cycles. Due to this property these materials are widely usedin Chemical-Looping Reforming processes to produce H2 and syngas. In this work supports based on MCM-41 and La-SiO2 were synthesized by hydrothermal method. After the synthesis step they were calcined at 550°C for 2 hours and characterized by TG, XRD, surface area using the BET method and FTIR spectroscopy. The deposition of active phase, in this case Nickel, took place in the proportions of 5, 10 and 20% by weight of metallic nickel, for use as oxygen carriers.The XRD showed that increasing in the content of Ni supported on MCM-41 resulted in a decrease in spatial structure and lattice parameter of the material. The adsorption and desorption curves of the MCM-41 samples exhibited variations with the increase of Ni deposited. Surface area, average pore diameter and wall density of silica showed significant changes , due to the increase of the active phase on the mesoporous material. By other hand, in the samples with La-SiO2 composition was not observed peaks characteristic of hexagonal structure, in the XRD diffractogram. The adsorption/desorption isotherms of nitrogen observed are type IV, characteristic of mesoporous materials. The catalytic test indicates that the supports have no influence in the process, but the nickel concentration is very important, because the results for minor concentration of nickel are not good. The ratio H2/O2 was close to 2, for all 15 cycles involving the test storage capacity of O2, indicating that the materials are effective for oxygen transport
Resumo:
Two pillaring methods were tested to synthesize pillared clays containing mixed Al/Co pillars. Using the first method, based on the traditional procedure, were obtained materials containing different Co concentrations: 10, 25, 50, 75 and 100 % of Co in the pillaring solution. Just the experiments with low concentrations (10 and 25 % of Co) has formed pillared clays, whereas the sample with 25 % of cobalt showed best results compared with the one obtained just using Al as pillaring agent (basal spacing higher than 18 Å and surface area bigger than 300 m²/g). The 27Al NMR results pointed out the formation of mixed Al/Co pillars due to decreased between the intensities of AlVI/AlIV signals, indicating that the AlIV content decreased while Co content increased, suggesting the isomorphic substitution of Al atoms for Co in the Keggin ion structure (pillaring agent). For the samples containing 75 and 100 % of cobalt, it was verified the formation of others materials, which could be identified as hydrotalcite like compounds. The second pillarization method was named mixed layers, because the objective was to intercalate clay layers with hydrotalcite layers. Thus, after calcination, the hydrotalcite layers would dehydroxylate, resulting just in the metals oxides, intercalated between the clay sheets, thus generating, a pillared clay. For this purpose, were tested 4 synthesis procedures: physical mixture, mixture in water, ionic exchange under reflux and in situ synthesis. Of these, the method which showed the best results was the in situ synthesis, in which basal spacings of 14 Å (after calcination) were obtained, indicating that the samples are intercalated with metal oxides (Mg and Al). This procedure was reproduced with a Co-Al LDH (layered double hydroxide) and similar results were obtained, testifying the method reproducibility
Resumo:
To overcome the challenge of meeting growing energy demand in a sustainable way, biodiesel has shown very promising as alternative energy can replace fossil fuels, even partially. Industrially, the biodiesel is produced by homogeneous transesterification reaction of vegetable oils in the presence of basic species used as catalysts. However, this process is the need for purification of the esters obtained and the removal of glycerin formed after the reaction. This context, the alternative catalysts have that can improve the process of biodiesel production, aiming to reduce costs and facilitate its production. In this study, the AlSBA-15 support with Si / Al ratio = 50 was synthesized, as like as the heterogeneous catalysts of zinc oxide and magnesium supported on mesoporous AlSBA-15 silica, in the concentrations of 5, 10, 15 and 30 %, relative to the support. The textural properties and structural characterization of catalysts and supports were determined by techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) coupled to the chemical analyzer, adsorption / desorption of N2, thermal analysis (TG / DTG), absorption spectroscopy in the infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). Characterization results indicated that the support AlSBA-15 retained the hexagonal ordered after the incorporation of zinc oxide and magnesium oxide in the holder. For heterogeneous catalysts, ZnO-AlSBA-15, that was observed the presence of zinc oxide nanoparticles dispersed in the surface and interior channels of the mesoporous and microporous support. The catalytic activity was evaluated by the transesterification reaction of sunflower oil via methylic route, and some reaction parameters were optimized with the most active catalyst in biodiesel production by sunflower oil. For the series of heterogeneous catalysts, the sample with 30 % ZnO supported on AlSBA-15 showed a better conversion of triglyceride to methyl esters, about 95.41 % of reaction conditions: temperature 175 °C, with molar ratio of 42:1, stirring at 200 rpm and under a pressure of 14 bar for 6 h. The catalyst MgO-AlSBA-15 showed no catalytic activity in the studied reactions
Resumo:
The environmental impact due to the improper disposal of metal-bearing industrial effluents imposes the need of wastewater treatment, since heavy metals are nonbiodegradable and hazardous substances that may cause undesirable effects to humans and the environment. The use of microemulsion systems for the extraction of metal ions from wastewaters is effective when it occurs in a Winsor II (WII) domain, where a microemulsion phase is in equilibrium with an aqueous phase in excess. However, the microemulsion phase formed in this system has a higher amount of active matter when compared to a WIII system (microemulsion in equilibrium with aqueous and oil phases both in excess). This was the reason to develop a comparative study to evaluate the efficiency of two-phases and three-phases microemulsion systems (WII and WIII) in the extraction of Cu+2 and Ni+2 from aqueous solutions. The systems were composed by: saponified coconut oil (SCO) as surfactant, n-Butanol as cosurfactant, kerosene as oil phase, and synthetic solutions of CuSO4.5H2O and NiSO4.6H2O, with 2 wt.% NaCl, as aqueous phase. Pseudoternary phase diagrams were obtained and the systems were characterized by using surface tension measurements, particle size determination and scanning electron microscopy (SEM). The concentrations of metal ions before and after extraction were determined by atomic absorption spectrometry. The extraction study of Cu+2 and Ni+2 in the WIII domain contributed to a better understanding of microemulsion extraction, elucidating the various behaviors presented in the literature for these systems. Furthermore, since WIII systems presented high extraction efficiencies, similar to the ones presented by Winsor II systems, they represented an economic and technological advantage in heavy metal extraction due to a small amount of surfactant and cosurfactant used in the process and also due to the formation of a reduced volume of aqueous phase, with high concentration of metal. Considering the reextraction process, it was observed that WIII system is more effective because it is performed in the oil phase, unlike reextraction in WII, which is performed in the aqueous phase. The presence of the metalsurfactant complex in the oil phase makes possible to regenerate only the surfactant present in the organic phase, and not all the surfactant in the process, as in WII system. This fact allows the reuse of the microemulsion phase in a new extraction process, reducing the costs with surfactant regeneration
Resumo:
The water quality of many reservoirs in the world has been reduced due to percolation of contaminants to water, which can have natural or anthropogenic origin, increasing the level of genotoxic compounds in aquatic ecosystems. This fact has contributed to the reduction of environmental quality, and commitment the health of living beings that inhabit these ecosystems, including the human population. In this backdrop of reduced water quality, is the Lucrecia dam, which is a major surface water reservoirs by volume of semi-arid region of Rio Grande do Norte, and that has shown contamination by heavy metals, cyanobacteria toxic and the natural presence of Radon. The population that use this source has been showing high rates of cancer, popularly associated with the consumption of this water, with a prevalence about three times higher compared to the whole state of Rio Grande do Norte. Based on this, the present study aimed to evaluate the mutagenic potencial of surface water from the Lucrecia dam, using the Micronucleus Test in Tradescantia pallida (Trad-MN) and in human peripheral blood lymphocytes (CBMN) assay, as well as identify the concentrations of some heavy metals in this water. Water samples were collected on a dry season and a rainy season, in two distinct points. Moreover, in order to bring a completely view about the relationship of man-health-environment in this local, through the knowledge of knowing / acting environmental from residents of Lucrecia, and the use and perceptions they have about the dam of your city, a study of Environmental Perception was carried out with local residents. The results obtained for the both micronucleus test, showed significant results for the three points analyzed. The strongest mutagenic effect was observed in the dry season for both assays. Chemical analyses detected an increase of heavy metal levels in different points and season above the maximum allowed by legislation. Regarding the study of Environmental Perception with local residents, it was observed the knowledge of the environment that the residents have, as well as the strong ties and perceptions with the dam of the city. Thus, the combination of these two aspects (the genetic toxicity tests conducted in the dam together with analysis of environmental perception with the residents of Lucrecia) allowed to draw a more complete diagnosis on the local situation
Resumo:
This study is conducted in the estuary of the rivers Jundiaí and Potengi, one of the most important estuaries of Rio Grande do Norte, which suffers a strong anthropogenic influence from neighboring cities. According to Resolution 344/2005 environments that have high concentrations of metals such as arsenic, cadmium, lead and mercury need ecotoxicological tests. This study aims to evaluate the heavy metals contamination in the estuary through analysis of sediment collected at four points distributed from Macaíba to Natal city, and in the crab Uçá, Ucides cordatus. The study aims also to evaluate the effects of sediment toxicity in the tests organisms Leptocheirus plumulosus. To obtain data about the concentrations of heavy metals in the environment, sediments were collected in January and May 2011 and crab Uçá was collected in June 2011. On the other hand the monitoring was carried out through toxicological tests with sediment collected from July to October 2011. During the collection of sediment samples the physico-chemical parameters of water (dissolved oxygen, pH, chloride, turbidity, conductivity and temperature) were measured by using multi-parametric probe (TROLL 9500). It was possible to identify contamination by metals such as lead, cadmium, arsenic and copper both in the sediment and in the Uçá crab, which characterizes that the consumption of this crustacean may be a risk to human health. Once the concentrations of metals were identified, toxicology tests were performed and revealed toxic effect to organisms in at least one of the four months studied. Point 2 was classified as toxic in three of the four months studied . The heavy metal contamination is a risk to the environment, to aquatic organisms and to the community which survives of resources taken from the environment