22 resultados para ganho de seleção
Resumo:
This research has aimed to analyze the presence of the Work and Organizational Psychology (WOP) at the psychologist s undergraduate education after 2004 s National Curricular Guidelines in Brazil. It has investigated in 43 Brazilian undergraduate courses of Psychology how their Course Pedagogical Projects (CPPs) approach the WOP issues. For that investigation, the CPPs, the subjects programmes related to the WOP and the curriculum grid have been accurately read and analyzed. Categories created by similar studies have also been used. The studied knowledge field has been cited by 41 courses, mainly on the definition of the egress s professional profile, on the expected competences and on the psychologist s formation process lines. Moreover, 28 courses have disposed curricular emphasis on the WOP and 12 have provided professional practices on that Psychology s field. All the courses have displayed, at least, one subject related to the WOP and in 29 cases there have been found between two and six subjects concerned to that field of Psychology, occupying nearby 10% of the whole courses credit hours. It has been verified that the Work and Organizational Psychology is allied to discussions about Quality of Life and Health of the Worker, bonded to work prescriptions at the Personnel Management departments and in other places such as syndicates. Additionally, 37% (147) of the WOP s subjects concerns to the contents of the Work Psychology, 21% (81) relates to the Organizational Psychology, 18% (71) are about Industrial Psychology s topics and 14% (55) debates the field generically. The most often issues are: Recruitment and Selection (25 courses); Training, Development, Learning and Education (24); and Work and Mental Health (24). Those topics have assumed three functions: providing principles for the acting at the WOP field; tutoring psychologists to analyze their own workplaces; and offering a comprehension of the human being mediated by the Work. It has been concluded that the WOP is incorporated on the psychologist s undergraduate education by considering the increasing of its presence and the occurrence of its traditional and emergent topics
Resumo:
The aim of this study was to evaluate the potential of near-infrared reflectance spectroscopy (NIRS) as a rapid and non-destructive method to determine the soluble solid content (SSC), pH and titratable acidity of intact plums. Samples of plum with a total solids content ranging from 5.7 to 15%, pH from 2.72 to 3.84 and titratable acidity from 0.88 a 3.6% were collected from supermarkets in Natal-Brazil, and NIR spectra were acquired in the 714 2500 nm range. A comparison of several multivariate calibration techniques with respect to several pre-processing data and variable selection algorithms, such as interval Partial Least Squares (iPLS), genetic algorithm (GA), successive projections algorithm (SPA) and ordered predictors selection (OPS), was performed. Validation models for SSC, pH and titratable acidity had a coefficient of correlation (R) of 0.95 0.90 and 0.80, as well as a root mean square error of prediction (RMSEP) of 0.45ºBrix, 0.07 and 0.40%, respectively. From these results, it can be concluded that NIR spectroscopy can be used as a non-destructive alternative for measuring the SSC, pH and titratable acidity in plums
Resumo:
Traditional applications of feature selection in areas such as data mining, machine learning and pattern recognition aim to improve the accuracy and to reduce the computational cost of the model. It is done through the removal of redundant, irrelevant or noisy data, finding a representative subset of data that reduces its dimensionality without loss of performance. With the development of research in ensemble of classifiers and the verification that this type of model has better performance than the individual models, if the base classifiers are diverse, comes a new field of application to the research of feature selection. In this new field, it is desired to find diverse subsets of features for the construction of base classifiers for the ensemble systems. This work proposes an approach that maximizes the diversity of the ensembles by selecting subsets of features using a model independent of the learning algorithm and with low computational cost. This is done using bio-inspired metaheuristics with evaluation filter-based criteria
Resumo:
The process for choosing the best components to build systems has become increasingly complex. It becomes more critical if it was need to consider many combinations of components in the context of an architectural configuration. These circumstances occur, mainly, when we have to deal with systems involving critical requirements, such as the timing constraints in distributed multimedia systems, the network bandwidth in mobile applications or even the reliability in real-time systems. This work proposes a process of dynamic selection of architectural configurations based on non-functional requirements criteria of the system, which can be used during a dynamic adaptation. This proposal uses the MAUT theory (Multi-Attribute Utility Theory) for decision making from a finite set of possibilities, which involve multiple criteria to be analyzed. Additionally, it was proposed a metamodel which can be used to describe the application s requirements in terms of the non-functional requirements criteria and their expected values, to express them in order to make the selection of the desired configuration. As a proof of concept, it was implemented a module that performs the dynamic choice of configurations, the MoSAC. This module was implemented using a component-based development approach (CBD), performing a selection of architectural configurations based on the proposed selection process involving multiple criteria. This work also presents a case study where an application was developed in the context of Digital TV to evaluate the time spent on the module to return a valid configuration to be used in a middleware with autoadaptative features, the middleware AdaptTV
Resumo:
Classifier ensembles are systems composed of a set of individual classifiers and a combination module, which is responsible for providing the final output of the system. In the design of these systems, diversity is considered as one of the main aspects to be taken into account since there is no gain in combining identical classification methods. The ideal situation is a set of individual classifiers with uncorrelated errors. In other words, the individual classifiers should be diverse among themselves. One way of increasing diversity is to provide different datasets (patterns and/or attributes) for the individual classifiers. The diversity is increased because the individual classifiers will perform the same task (classification of the same input patterns) but they will be built using different subsets of patterns and/or attributes. The majority of the papers using feature selection for ensembles address the homogenous structures of ensemble, i.e., ensembles composed only of the same type of classifiers. In this investigation, two approaches of genetic algorithms (single and multi-objective) will be used to guide the distribution of the features among the classifiers in the context of homogenous and heterogeneous ensembles. The experiments will be divided into two phases that use a filter approach of feature selection guided by genetic algorithm
Resumo:
The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward
Resumo:
The main goal of Regression Test (RT) is to reuse the test suite of the latest version of a software in its current version, in order to maximize the value of the tests already developed and ensure that old features continue working after the new changes. Even with reuse, it is common that not all tests need to be executed again. Because of that, it is encouraged to use Regression Tests Selection (RTS) techniques, which aims to select from all tests, only those that reveal faults, this reduces costs and makes this an interesting practice for the testing teams. Several recent research works evaluate the quality of the selections performed by RTS techniques, identifying which one presents the best results, measured by metrics such as inclusion and precision. The RTS techniques should seek in the System Under Test (SUT) for tests that reveal faults. However, because this is a problem without a viable solution, they alternatively seek for tests that reveal changes, where faults may occur. Nevertheless, these changes may modify the execution flow of the algorithm itself, leading some tests no longer exercise the same stretch. In this context, this dissertation investigates whether changes performed in a SUT would affect the quality of the selection of tests performed by an RTS, if so, which features the changes present which cause errors, leading the RTS to include or exclude tests wrongly. For this purpose, a tool was developed using the Java language to automate the measurement of inclusion and precision averages achieved by a regression test selection technique for a particular feature of change. In order to validate this tool, an empirical study was conducted to evaluate the RTS technique Pythia, based on textual differencing, on a large web information system, analyzing the feature of types of tasks performed to evolve the SUT