26 resultados para espinélio


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyrometamorphism results from conditions of high temperatures and very low pressures provoked by the intrusion of hypabyssal basic bodies into sedimentary or metassedimentary hosting rocks. The onshore portion of the Potiguar Basin in NE Brazil offers examples of this type of metamorphism nearby the contacts of Paleogene to Neogene plugs, sills and dikes of diabases and basalts crosscutting sandstones, siltstones and shales of the Açu Formation (Albian-Cenomanian). The thermal effects over these rocks are reflected on textures and minerals assemblages that characterize the sanidinite facies of metamorphism, often with partial melting of the feldspathic and mica-rich matrix. The liquid formed is potassic and peraluminous, with variably colored rhyolitic glass (colorless, yellow, brown) comprising microcrystals of tridymite, sanidine and clinoenstatite, besides residual detrital clasts of quartz and rarely zircon, staurolite and garnet. Lenses of shale intercalated within the sandstones display crystallites of Fe-cordierite (sekaninaite), mullite, sanidine, armalcolite (Fe-Ti oxide) and brown spinel. The rocks formed due to the thermal effect of the intrusions are called buchites for which two types are herein described: a light one derived from feldspathic sandstone and siltstone protoliths; and a dark one derived from black shale protoliths. Textures indicating partial melting and minerals such as sanidine, mullite, tridymite and armalcolite strongly demonstrate that during the intrusion of the basic bodies the temperature reached 1,000-1,150°C, and was followed by quenching. Cooling of the interstitial melts has as consequences the closure of pores and decrease of the permeability of the protolith, which varies from about 17-11% in the unaffected rocks to zero in the thermally modified types. Although observed only at contacts and over small distances, the number of basic intrusions hosted within the Potiguar Basin in both onshore and offshore portions leaves opened the possibility of important implications of the thermal effects over the hydrocarbon exploration in this area as well in other Cretaceous and Paleozoic basins in Brazil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramic pigments that own mainly the spinel structure AB2O4 are becoming a matter of great scientific and technological interest due to the ability of accommodate different cations in its structure, allowing different dopings and thus obtaining different colors. Studies on ceramic pigments currently are being directed to the development of stable and pigments obtained at low temperatures and with greater reproducibility. This work aims at the use of inorganic pigments for applications in ceramic tiles, investigating the influence of doping and calcination temperature on the coloring pigments and ceramic glazes. the based pigments of CoCr2O4, CoAl2O4, Co0,8Zn0,2Cr2O4 and Co0,8Zn0,2Al2O4 were synthesized by a chemical route using commercial gelatin as organic precursor. The materials were characterized by thermogravimetric analysis (TG), X-ray diffraction (XRD), infrared spectroscopy (FTIR) spectroscopy scanning electron microscopy (SEM) in the UVVisible region and colorimetry. The results confirmed the feasibility of synthesis used, the route presented pigments crystal structures and the desired phases were obtained from 500 °C with increased crystallinity and the crystallite size. The pigments have hues ranging from green to violet according to their doping and calcination temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years, solid carriers suitable oxygen have been developed for use in different chemical processes recirculation. The success of this technology is directly related to the chemical reactivity and the oxygen storage capacity of the carrier. Thus, research into the development of new materials that can be applied to the process becomes extremely important. Possible candidates are the carriers based on nickel and copper for presenting favorable thermodynamic properties. In this work, aluminates type MAl2O4 (M = Mg and Ca) and M0,9B0,1Al2O4 (B = Ni and Cu) that are used as supports were synthesized by combustion reactions assisted by microwave and calcined at 900°C/2h. Then, the carriers were impregnated with 10% (m/m) of nickel or copper, and subsequently calcined at 600°C/2h to obtain the solid oxygen carriers, which were characterized by X-ray diffraction (XRD) Microscopy scanning electron microscopy (SEM) and temperature programmed reduction (TPR). Reactions simulating the combustion process by chemical recirculation were performed by cycles reduction/oxidation, in order to evaluate the reactivity of carriers. XRD analysis revealed diffraction peaks of the spinel type structures. In the doped substrates were verified the presence of secondary phases, suggesting that all the metal was incorporated into the spinel structure. In solid oxygen carriers, the NiO and CuO phases were observed after impregnation of active phases on different media. The results of evaluations of chemical cycles reduction/oxidation revealed that TSO's impregnated with nickel in various media were more active and are potential candidates for use in the chemical recirculation technology

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cobalt-manganese ferrites (Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4) has a mixed structure of spinel type and it has been regarded as one of candidates for petitive wide variety of applications in devices from ultrasonic generation and detection, sensors, transformers, as well as in medical industry. Ferrites cobalt-manganese nanostructured were produced via mechanical alloying with subsequent heat treatment and were characterized by X-ray diffraction, X-ray fluorescence, scanning electron microscopy and magnetization. Samples of Co1¡xMnxFe2O4 and Co1,2Fe1,8¡xMnxO4 were obtained from the precursor powders Fe3O4, Co3O4 and Mn3O4 which were stoichiometrically mixed and ground by 10h and heat treated at 900°C for 2h. The diffraction confirmed the formation of the pure nanocrystalline phases to series Co1,2Fe1,8¡xMnxO4 with an average diameter of about 94nm. It was found that the lattice parameter increases with the substitution of Fe3Å by Mn3Å. The x-ray fluorescence revealed that the portions of metals in samples were close to the nominal stoichiometric compositions. The microstructural features observed in micrographs showed that the particles formed show very different morphology and particle size. The magnetic hysteresis measurements performed at low temperature showed that the saturation magnetization and remanence increased as the concentration of manganese, while the coercive field decreased. The anisotropy constant (Ke f ), was estimated from the data adjustments the law of approaching saturation. It was found that the anisotropy decreases substantially with the substitution of Fe by Mn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims the characterization of thermally affected carbonate rocks from Jandaíra Formation in contact with Paleogene and Neogene basic intrusions in the region of the Pedro Avelino and Jandaíra municipalities (RN), northeastern Brazil. For this study, field, petrographic, x-ray diffraction, electron microprobe, and whole rock litogeochemistry data of carbonates were undertaken. The thermally unaffected limestones are classified like wackstones, grainstones and packstones. They may constitute carbonates grains of benthic foraminifera, echinoderm spines, ostracods, algae, corals, bivalves, gastropods, peloids and intraclasts. The porosities are classified like vug, intraparticle, interparticle, intercrystal and moldic types. The major minerals are calcite, ankerite and dolomite; the detrital are montmorillonite, pyrite, limonite, quartz and microcline. The thermally affected limestones are very coarse to very fine-grained and light to dark gray color. The fossiliferous components totally disappear, and the porosity tends to disappear. With the data obtained, it can be inferred that the carbonate protoliths would be calciferous to dolomitic limestones, both with small amount of clay minerals. Crystalline carbonates from dolomitic protolith have rhombohedral calcite and iron oxides / hydroxides, making the rocks much darker. The carbonates from calciferous protolith have a wide variation of grain size according to the recrystallization degree, increasing toward contact with the basic bodies. In this group, it was identified the minerals lizardite and spinel in weakly to moderately affected samples, and spinel and spurrite in strongly affected rocks, as well as calcite, that occur everywhere. The geological context (shallow level diabase intrusions), the crystallization of the pyrometamorphic minerals spurrite and olivine, and comparison with diagrams from the literature allow estimating temperatures and pressures around 1050-1200 °C and 0.5-1.0 kbar, respectively, for PTOTAL=PCO2. The post-intrusion cooling would have afforded the releasing of metasomatic / hydrothermal fluids, allowing the opening of the metamorphic system, with possible contribution of chemical elements from host units (sandstones, shales) and from basic intrusions. This would induce hydration of previous phases, allowing the formation of serpentine, chlorite and brucite. The results discussed here reveal the strong influence of the heat from basic intrusions within the sedimentary pile. Whereas in the offshore portion of the basin occur sills with up to 1000 m thickness, the understanding of pyrometamorphism might be useful for understanding and measuring the thermally affected rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study aims the characterization of thermally affected carbonate rocks from Jandaíra Formation in contact with Paleogene and Neogene basic intrusions in the region of the Pedro Avelino and Jandaíra municipalities (RN), northeastern Brazil. For this study, field, petrographic, x-ray diffraction, electron microprobe, and whole rock litogeochemistry data of carbonates were undertaken. The thermally unaffected limestones are classified like wackstones, grainstones and packstones. They may constitute carbonates grains of benthic foraminifera, echinoderm spines, ostracods, algae, corals, bivalves, gastropods, peloids and intraclasts. The porosities are classified like vug, intraparticle, interparticle, intercrystal and moldic types. The major minerals are calcite, ankerite and dolomite; the detrital are montmorillonite, pyrite, limonite, quartz and microcline. The thermally affected limestones are very coarse to very fine-grained and light to dark gray color. The fossiliferous components totally disappear, and the porosity tends to disappear. With the data obtained, it can be inferred that the carbonate protoliths would be calciferous to dolomitic limestones, both with small amount of clay minerals. Crystalline carbonates from dolomitic protolith have rhombohedral calcite and iron oxides / hydroxides, making the rocks much darker. The carbonates from calciferous protolith have a wide variation of grain size according to the recrystallization degree, increasing toward contact with the basic bodies. In this group, it was identified the minerals lizardite and spinel in weakly to moderately affected samples, and spinel and spurrite in strongly affected rocks, as well as calcite, that occur everywhere. The geological context (shallow level diabase intrusions), the crystallization of the pyrometamorphic minerals spurrite and olivine, and comparison with diagrams from the literature allow estimating temperatures and pressures around 1050-1200 °C and 0.5-1.0 kbar, respectively, for PTOTAL=PCO2. The post-intrusion cooling would have afforded the releasing of metasomatic / hydrothermal fluids, allowing the opening of the metamorphic system, with possible contribution of chemical elements from host units (sandstones, shales) and from basic intrusions. This would induce hydration of previous phases, allowing the formation of serpentine, chlorite and brucite. The results discussed here reveal the strong influence of the heat from basic intrusions within the sedimentary pile. Whereas in the offshore portion of the basin occur sills with up to 1000 m thickness, the understanding of pyrometamorphism might be useful for understanding and measuring the thermally affected rocks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inorganic pigment comprises a host lattice, which is part of the chromophore component (usually a transition metal cation) and possible components modifiers, which stabilize, add or restate the properties pigments. Among the materials with spinel, ferrites, and the chromite stand out, because they have broad technological importance in the area of materials, applicability, pigments, catalytic hydrogenation, thin film, ceramic tiles, among others. The present work, pigments containing CuFe2O4, CuCr2O4,e CuFeCrO4, were synthesized by a method that makes use of gelatin as organic precursor using their application to ceramic pigments. The pigments were characterized by X-ray diffraction (XRD), Infrared spectroscopy, scanning electron microscopy (SEM) spectroscopy in the UV-visible and Colorimetry. The results confirmed the feasibility of the synthetic route used, with respect to powders synthesized, there is the formation of spinel phase from 500°C, with an increase in crystallinity and the formation of other phases. The pigments were shown to be crystalline and the desired phases were obtained. The copper chromite have hues ranging from green to black according to the calcination temperature, while the copper chromite doped with iron had brownish. The ferrites showed copper color and darker brown to black, which may indicate an interesting factor because of the importance of black pigment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxide type spinel AB2O4 presents structure adjusted for application in the automobile industry. The spinel of cobalt has many practical applications had its excellent physical and chemical properties such as catalyst in hydrocarbon oxidation reaction. The CeO2 has been used in many of these processes because it assigns to a material with excellent thermal resistance and mechanics, high capacity of oxygen stockage (OSC) among others properties. This work deals with the synthesis, characterization and catalytic application of spinel of cobalt and CeO2 with fluorita structure, obtained for method of Pechini and method of Gel-Combustion. The process of Pechini, the puff was obtained at 300 ºC for 2 h in air. In the process of Gel-Combustion the approximately at 350 ºC material was prepared and burnt for Pyrolysis, both had been calcined at 500 ºC, 700 ºC, 900 ºC and 1050 ºC for 2 h in air. The materials of the calcinations had been characterized by TG/DTA, electronic microscopy of sweepings (MEV), spectroscopy of absorption in the infra-red ray (FTIR) and diffraction of X-rays (DRX). The obtained material reaches the phase oxide at 450 oC for Pechini method and 500 °C for combustion method. The samples were submitted catalytic reaction of n-hexane on superficies of materials. The reactor function in molar ration of 0, 85 mol.h-1.g-1 and temperature of system was 450 °C. The sample obtained for Pechini and support in alumine of superficial area of 178,63 m2.g-1 calcined at 700 ºC, give results of catalytic conversions of 39 % and the sample obtained for method of gel-combustion and support in alumina of 150 mesh calcined at 500 ºC result 13 % of conversion. Both method were selective specie C1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Synthetic inorganic pigments are the most widely used in ceramic applications because they have excellent chemical and thermal stability and also, in general, a lower toxicity to man and to the environment. In the present work, the ceramic black pigment CoFe2O4 was synthesized by the polymerization Complex method (MPC) in order to form a material with good chemical homogeneity. Aiming to optimize the process of getting the pigment through the MPC was used a fractional factorial design 2(5-2), with resolution III. The factors studied in mathematical models were: citric acid concentration, the pyrolysis time, temperature, time and rate of calcination. The response surfaces using the software statistica 7.0. The powders were characterized by thermal analysis (TG/DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM) and spectroscopy in the UV-visible. Based on the results, there was the formation of phase cobalt ferrite (CoFe2O4) with spinel structure. The color of the pigments obtained showed dark shades, from black to gray. The model chosen was appropriate since proved to be adjusted and predictive. Planning also showed that all factors were significant, with a confidence level of 95%

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetic ceramics have been widely investigated, especially with respect to intrinsic and extrinsic characteristics of these materials. Among the magnetic ceramic materials of technological interest, there are the ferrites. On the other hand, the thermal treatment of ceramic materials by microwave energy has offered various advantages such as: optimization of production processes, high heat control, low consumption of time and energy among others. In this work were synthesized powders of Ni-Zn ferrite with compositions Ni1- xZnxFe2O4 (0.25 ≤ x ≤ 0.75 mols) by the polymeric precursor route in two heat treatment conditions, conventional oven and microwave energy at 500, 650, 800 and 950°C and its structural, and morphological imaging. The materials were characterized by thermal analysis (TG/ DSC), X-ray diffraction (XRD), absorption spectroscopy in the infrared (FTIR), scanning electron microscopy (SEM), X-ray spectroscopy and energy dispersive (EDS) and vibrating sample magnetometry (VSM). The results of X-ray diffraction confirmed the formation of ferrite with spinel-type cubic structure. The extrinsic characteristics of the powders obtained by microwave calcination and influence significantly the magnetic behavior of ferrites, showing particles ferrimagnéticas characterized as soft magnetic materials (soft), is of great technological interest. The results obtained led the potential application of microwave energy for calcining powders of Ni-Zn ferrite