191 resultados para espectroscopia fotoacústica
Resumo:
Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug
Resumo:
Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry
Resumo:
Sulfated polysaccharides (PS) are biomolecules with a great biotechnological potential. There are few data about PS from high plants. In addition, pharmacological activities of PS from plants have not been carrying out. The aim of this work was extract PS from the angiosperm Halodule wrightii and study their anticoagulant and antioxidant activities. Histological analysis showed the presence of the PS manly in the roots. A polysaccharide-rich extract was obtained from H. wrightii by proteolysis followed by methanol and TCA precipitation. Chemical, infra-red analysis and agarose gel electrophoresis in 1.3 diaminopropane acetate buffer confirmed the presence of sulfated polysaccharides made by glucose, galactose, xylose and sulfate residues in the proportion 1: 0,9: 1: 1. In addition polyacrilamide electrophoresis have shown that extract is mainly compose by 11kDa sulfated polysaccharides. Pharmacological analysis have shown total antioxidant capacity (CAT) that resulted in 15,21 μg for equivalent of ascorbic acid, scavenging activity of the DPPH radical with 41,36 % of scavenging, activity of reducing power with the maximum of 0,290 nm (50 % of vitamin C activity) and scavenging activity superoxide radical (O2-) with a maximum of 32,23 %. Chelating activity of metal less than 4% and scavenging activity of the radical hydroxyl (OH-) less than 2%. Time of activated partial tromboplastin (aPTT) doubling the time of coagulation from 20μg of and protrombin time (PT) was not present. The data indicate that PS from Halodule wrightii could be considered for future applications in medicine, food production or cosmetic industry
Resumo:
The exopolysaccharides are extracellular compounds produced by some species of fungi and bacteria. It is suggested that these molecules, even when in the form of complex polysaccharide-peptide, are the main bioactive molecules of many fungus. Some of the biological activities displayed by these compounds can be accentuated and others may arise when you add chemically polar or nonpolar groups to polysaccharides. The fruiting body of Pleurotus sajor-caju produces a heteropolysaccharide with antineoplastic and antimicrobial activity, but other biological activities of this polymer have not been evaluated. In this work the exopolysaccharide of Pleurotus sajor-caju was sulfated chemically and structurally characterized. We also evaluated the antiproliferative, antioxidant and anticoagulant activities from native exopolysaccharide (PN) and its sulfated derivated (PS). Polyacrylamide gel electrophoresis, infrared spectroscopy and nuclear magnetic resonance (¹³C) proved successful in sulfation of PN to obtain PS. Analysis by gas chromatography-mass spectroscopy showed that PN and PS are composed of mannose, galactose, 3-O-methyl-galactose and glucose in proportion percentage of 44,9:16,3:19,8:19 and 49, 7:14,4:17,7:18,2, respectively. The percentage of sulfate found in PS was 22.5%. Antioxidants assays revealed that the sulfation procedure affects differently the activities of exopolysaccharides, while the total antioxidant capacity, the scavenging activity of superoxide radical and ferric chelating were not affected by sulfation, on the other hand the chemical modification of PN enhanced the scavenging activity of hydroxyl radical and reducing power. PS also showed anticoagulant activity in a dose-dependent manner and clotting time was 3.0 times higher than the baseline value in APTT at 2 mg/mL. The exopolysaccharide not presented antiproliferative activity against HeLa tumor cells, but PS affects the cellular proliferation in a time-dependent manner. After 72 h, the inhibition rate of PS (2.0 mg/mL) on HeLa cells was about 60%. The results showed that PN sulfation increase some of their activities.
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
Fungal polysaccharides have received a great deal of attention due to itsbecause of their potential use in a wide rangegreat variety fromof industries. Some studies have demonstrated that polysaccharides extracted offrom basidiomycetes they have presented significant properties as anti-inflammatory, antimicrobial, antioxidant and anti-tumoral properties. In spite of thisDespite these potential properties, these mushrooms have not been insufficiently investigated, and the great number of antibiotics number produced forby these organisms suggests that they canmay be a new source of bioactives composites source. In tThe present work, reports onlated the chemical composition, potential antioxidant, antiinflammatory and citotoxycity of extracted polymers extracted offrom the fruits bodies of the fungiius Geastrum saccatum and Polyporus dermoporus, native mushrooms of the Atlantic forest inof the state of the Rio Grande do Norte, Brazil. The Cchemical analyses had revealed ademonstrated text of total sugar rates of 65% and 49%, and proteins of 7.0% for in extracts of G. saccatum and P. dermoporus extracts, respectively. The analyses ofNMR spectroscopy of RMN had demonstrated that these extracts are composites forof a complex involving β- glucans and- proteins complex. The inhibition of the formation of superoxide radicals formation was of 88.4% in G. saccatum and 83.3% in P. dermoporus, and 75 and 100% for inhibition of hydroxyls radicals inhibition. TopicalThe topic application of extracts the 10, 30 and 50 mg/kg extract in BALBc mice with cutaneous inflammation induced byfor croton oil demonstrated to inhibitedion of ear edema of ear and cells polimorfonuclears cells atin the inflamed siteplace, being this reply more effective in lower concentrations being more effective. The evaluation of the glucans of G. saccatum and P. dermoporus glucans under induced pleurisy for carrageenan-induced pleurisya of showed the antiinflammatory action of these composites., being analyzed tThe frame number in the pleural exudates and thedosage of nitric oxide dosage was also analyzed. The cytotoxic action of these polymers was analyzed throughthrough the mitochondrial function (MTT). The incubation of the glucans with mononuclear cells of the peripheral blood demonstrated that the extracted glucans extracted fromof G. saccatum havepossess a moderate cytotoxic action. These results suggest that these mushrooms possess polymers formed byfor a complex glucana-protein complex, with antiinflammatory and antioxidant actions
Resumo:
Compounds derived from fungi has been the subject of many studies in order to broaden the knowledge of their bioactive potential. Polysaccharides from Caripia montagnei have been described to possess anti-inflammatory and antioxidant properties. In this study, glucans extracted from Caripia montagnei mushroom were chemically characterized and their effects evaluated at different doses and intervals of treatment. It was also described their action on colonic injury in the model of colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS), and its action on cells of the human colon carcinoma (HT-29). Compounds extracted of C. montagnei contain high level of carbohydrates (96%), low content of phenolic compounds (1.5%) and low contamination with proteins (2.5%). The (FT-IR) and (NMR) analysis showed that polysaccharides from this species of mushroom are composed of α- and β-glucans. The colonic damage was evaluated by macroscopic, histological, biochemical and immunologic analyses. The results showed a reduction of colonic lesions in all groups treated with the glucans of Caripia montagnei (GCM). GCM significantly reduced the levels of IL-6 (50 and 75 mg/kg, p < 0.05), a major inflammatory cytokine. Biochemical analyses showed that such glucans acted on reducing levels of alkaline phosphatase (75 mg/kg, p < 0.01), nitric oxide (p < 0.001), and myeloperoxidase (p < 0.001). These results were confirmed microscopically by the reduction of cellular infiltration. The increase of catalase activity suggest a protective effect of GCM on colonic tissue, confirming their anti-inflammatory potential. GCM displayed cytostatic activity against HT-29 cells, causing accumulation of cells in G1 phase, blocking the cycle cell progression. Those glucans also showed ability to modulate the adhesion of HT-29 cells to Matrigel® and reduced the oxidative stress. The antiproliferative activity against HT-29 cells displayed by GCM (p <0.001) can be attributed to its cytostatic activity and induction of apoptosis by GCM
Resumo:
The alginic acid or alginates are acidic polysaccharides found in brown seaweed widely used in food, cosmetic, medical and pharmaceutical industry. This paper proposes the extraction, chemical characterization and verification of the pharmacological activities of brown seaweed variegata Lobophora . The alginate was extracted from the seaweed Lobophora variegata and part was sulphated for comparative purposes. The native extract showed 42% total sugar, 65% uronic acid, 0,36 % protein and 0% of sulfate, while the sulfate showed 39% , 60%, 0.36% and 27,92 % respectively. The presence of a sulfate group may be observed by the metachromasia with toluidine blue in electrophoresis system and characteristic vibration 1262,34 cm-1 in infrared spectroscopy connections assigned to S = O. We observed the formation of films and beads of native alginate, where more concentrated solution 6% resulted in a thicker and more consistent film. Native alginate showed proliferative activity at concentrations (25 and 50 mcg), (50 mg) and (100 mg) in 3T3 cell line in 24h, 48h and 72h, respectively , as the sulfated (100 mg) in 24 . Also showed antiproliferative or cytotoxic activity in HeLa cells of strain, (25 and 100 mg), (25 and 100 mg) and (25, 50 and 100 mg), to native, now for the sulfate concentrations (100 mg) in 24 (25, 50 and 100 mg) in 48 hours, and (50 and 100 mg ) 72h. For their antioxidant activity, the sulfated alginates have better total antioxidant activity reaching 29 % of the native activity while 7.5 % of activity . For the hydroxyl radical AS showed high inhibition ( between 77-83 % ) in concentrations, but the AN surpassed these numbers in the order of 78-92 % inhibition. The reducing power of AN and AS ranged between 39-82 % . In the method of ferric chelation NA reached 100 % chelating while the AS remained at a plateau oscillating 6.5%. However, in this study , we found alginates with promising pharmacological activities, to use in various industries as an antioxidant / anti-tumor compound
Resumo:
The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process
Resumo:
This study proposes to do a study on the mathematical modeling of permeation of films based on chitosan. To conduct the study were obtained membranes with various compositions: a virtually pure membrane-based chitosan; one of chitosan associated with poly (ethylene oxide (PEO). The membranes of pure chitosan were treated with plasma in atmospheres of oxygen, argon and methane. The various types of films were characterized as to its permeation regarding sufamerazina sodium. In the process of mathematical modeling were compared the standard method of obtaining the coefficient of permeation recital straight down the slope of the plot obtained by extinction / time with a the integration process of numerical permeability rate will be calculated from the spectroscopy UV
Resumo:
heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke
Resumo:
Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs
Resumo:
In this work have been studied the preparation, characterization and kinetic study of decomposition of the polymerizing agent used in the synthesis under non-isothermal condition ceramics PrMO3 of general formula (M = Co and Ni). These materials were obtained starting from the respective metal nitrates, as a cations source, and making use of gelatin as polymerizing agent. The powders were calcined at temperatures of 500°C, 700°C and 900°C and characterized by X-ray Diffraction (XRD), Thermogravimetric Analysis (TG / DTG/ DTA), Infrared Spectroscopy (FTIR), Temperature Programmed Reduction (TPR) and Scanning Electron Microscopy (SEM). The perovskite phase was detected in all the X-rays patterns. In the infrared spectroscopy observed the oxide formation as the calcination temperature increases with the appearance of the band metal - oxygen. The images of SEM revealed uniform distribution for the PrCoO3 and particles agglomerated as consequence of particle size for PrNiO3. From the data of thermal analysis, the kinetics of decomposition of organic matter was employed using the kinetics methods called Model Free Kinetics and Flynn and Wall, in the heating ratios 10, 20 and 30° C.min-1 between room temperature and 700°C. Finally, been obtained the values of activation energy for the region of greatest decomposition of organic matter in samples that were determined by the degree of conversion (α)
Resumo:
In this study barium hexaferrite was (general formulae BaFe12O19) was synthesized by the Pechini method under different conditions of heat treatment. Precursors like barium carbonate and iron nitrate were used. These magnetic ceramic, with magnetoplumbite type structure, are widely used as permanent magnet because of its excellent magnetic properties, such as: high Curie temperature, good magnetic anisotropy, high coercivity and corrosion resistance. The samples were characterized by thermal analysis (DTA and TG), X- ray Diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) end Vibrating sample Magnetometer (VSM). The results confirm the expected phase, which was reinforced according to our analysis. A single phase powder at relatively high temperatures with particle sizes around 100 nm was obtained. The characteristic magnetic behavior one of the phases has been noted (probably superparamagnetic material), while another phase was identified as a ferrimagnetic material. The ferrimagnetic phase showed vortex configuration with two central and slightly inclined plateaus. In general, increase of heat treatment temperature and time, directly influenced the technological properties of the samples
Resumo:
Discs were grade II cp Ti oxynitride by plasma of Ar - N2 - O2 using different proportions of individual gases. These ratios were established from analysis of optical emission spectroscopy (OES) of plasma species. The proportions that resulted in species whose spectra showed an abrupt change of light intensity were chosen for this study. Nanohardness tests revealed that there was a correlation between the intensity of N2 + species with the hardness, because the treatments where they had a higher intensity, obtained a higher value nanohardness, although the crystalline phases have remained unchanged. With respect to topography, it was observed that in general, the surface roughness is related to the intensities of plasma species, because they may have different values depending on the behavior of the species. Images obtained by optical microscopy revealed a surface with grains of different colors to optical reflectance showed a peak of reflection in the red area. Measures the contact angle and surface tension showed hydrophilic properties and hydrophilic with little variation of polar and dispersive components of surface tension