28 resultados para anionic trash
Resumo:
The experience as a school psychologist allowed me to notice that expressions like I was like trash in the gang s barbecue , and we chatted away, only the girls, and we all got drunk , are very common in conversations between Elementary and High School students, pointing out to a concerning incidence of alcohol consumption among female adolescents. However, studies about this theme haven t gone deep in the nowadays reality these girls are living in. This study aimed at comprehending the aspects of the relation between girls and alcohol, starting from the point that exaggerated consumption indicates introductory rituals for some groups, making social relations easier and becoming a sociability factor. To give this study some support, a questionnaire was applied to 1028 female teenagers, between 12 and 18 years old, students in private schools in Natal, capital of Rio Grande do Norte. The context chosen for the development of the study - private schools -, arose from the notion that the majority of the data collection carried out about alcohol and other psychotropic drugs aim at public school students. The instrument used was divided in two parts, one that treated about the first contact with alcohol (experimentation), and other that points to the current relation with alcoholic beverages, with 27 closed questions but nevertheless with available space for manifestation like if other; which?, applied collectively in classrooms. The data received a statistic treatment from SPSS and showed that the first contact with alcoholic beverage happens in domestic environment, having parents and friends as companions, very precociously, around 10 years of age, as curiosity. At this moment, Ice drink is the most consumed beverage. The main reason that leads them to drink is to pass the time in parties, and they don t drink alone (93% of students researched), what gives alcohol this recreational and socializing characteristic. They do consider alcohol a kind of drug, but are not afraid of getting addicted. People that drink usually show to be extroverted, they get happier (40,3%) and are not shy at all (29,4%), have attitudes of moral character, like to get involved with unknown boys (18,5%), get numb (9,9%), or get sad (1,9%). They label as vulgar the girls that drink, depending on the amount, and to be stimulated by the boys to drink. The study shows that systematic interventions of the school are necessary, once it is an institution that should care about education and personality traits of children and adolescents, as well as the important role of the psychologist in this context. Besides, it claims the society to get effectively involved with the public policies that already exist
Resumo:
Due to the need of increasing production in reservoirs that are going through production decline, methods of advanced recovery have frequently been used in the last years, as the use of conventional methods has not been successful in solving the problem of oil drifting. In this work, the efficiency of different microemulsionated systems in the flow of oil from cores from Assu and Botucatu formations. Regarding drifting tests, cores were calcinated at a temperature of 1000°C, for 18 hours, with the aim of eliminating any organic compound present in it, increasing the resultant permeability. Following, the cores were isolated with resin, resulting in test specimens with the following dimensions: 3.8 cm of diameter and 8.7 cm of length. Cores were saturated with brine, composed of aqueous 2 wt % KCl, and oil from Guamaré treatment station (Petrobras/RN). A pressure of 20 psi was used in all tests. After core saturation, brine was injected again, followed by oil at constant flow rate. The system S3 - surfactant (anionic surfactant of short chain), isoamillic alcohol, pine oil, and water - presented the best drift efficiency, 81.18%, while the system S1E commercial surfactant, ethyl alcohol, pine oil, and distilled water presented low drift efficiency, 44,68%
Resumo:
Polyester fibers are the most used fibers in the world and disperse dyes are used for dyeing these fibers. After dyeing, the colorful dyebath is discharged into effluent streams, which needs a special treatment for color removal. Surfactants interaction with dyes has been evaluated in several studies, including the textile area, specifically in the separation of dyes from textile wastewater. In this work a cationic surfactant was used in a microemulsion system for the extraction of anionic dyes (disperses dyes) from textile wastewater. These microemulsion system was composed by dodecylamonium chloride (surfactant), kerosene oil (organic phase), isoamyl alcohol (cosurfactant) and the wastewater (aqueous phase). The wastewater that results after the dyeing process is acid (pH 5). It was observed that changing the pH value to above 12.8 the extraction could be made, resulting in an aqueous phase with low color level. The Scheffé net experimental design was used for the extraction process optimization, and the obtained results were evaluated using the program "Statistica 7.0". The optimal microemulsion system was composed by 59.8wt.% of wastewater, 30.1wt.% of kerosene, 3.37wt.% of surfactant and 6.73wt.% of cosurfactant, providing extraction upper than 96%. A mix of reactive dyebath (50%) and disperse dyebath (50%) was used as aqueous phase and it presented extraction upper than 98%. The water phase after extraction process can be reused in a new dyeing, being obtained satisfactory results, according to the limits established by textile industry for a good dyeing. Tests were accomplished seeking to study the influence of salt addition and temperature. An experimental design was used for this purpose, which showed that the extraction doesn't depend on those factors. In this way, the removal of color from textile wastewater by microemulsion is a viable technique (that does not depend of external factors such as salinity and temperature), being obtained good extraction results even with in wastewater mixtures
Resumo:
The phenomenon of adsorption is of fundamental importance for the treatment of textile effluents and removal of dyes. Chitosan is characterized as an excellent adsorbent material, not only for its adsorption capacity but also the low cost production. Equilibrium and kinetic studies were developed in this study to describe the mechanism of adsorption of the anionic azo dye Orange G in chitosan, with the isotherms obtained from the variation of the concentration of dye in the continuous phase. The kinetics of the process was analyzed based on models involving the adsorption of molecules of the dye in nonpolar and polar sites. Adsorption experiments were carried out in water and in saline media with different NaCl concentrations, both for the determination of the equilibrium time as isotherms for making kinetic curves in which the amount of dye adsorbed measured indirectly varied with time. The experiments revealed the opening of the biopolymer structure with increasing concentration of Orange G, accompanied by high pH values and change on the type of interaction between the dye and the adsorbent surface, suggesting behavior advocated by the Langmuir equation in a certain range of concentration of the adsorbate and following the Henry's Law at higher concentrations, from the increased number of sites available for adsorption. The studies conducted showed that the saline medium reduces the chitosan s adsorption capacity according to a certain concentration, the occurrence of the cooperative adsorption process steps kinetic mechanism suggested as a new alternative for the interpretation of the phenomenon
Resumo:
TiTanate NanoTubes (TTNT) were synthesized by hydrothermal alkali treatment of TiO2 anatase followed by repeated washings with distinct degrees of proton exchange. TTNT samples with different sodium contents were characterized, as synthesized and after heattreatment (200-800ºC), by X-ray diffraction, scanning and transmission electron microscopy, electron diffraction, thermal analysis, nitrogen adsorption and spectroscopic techniques like FTIR and UV-Vis diffuse reflectance. It was demonstrated that TTNTs consist of trititanate structure with general formula NaxH2−xTi3O7·nH2O, retaining interlayer water in its multiwalled structure. The removal of sodium reduces the amount of water and contracts the interlayer space leading, combined with other factors, to increased specific surface area and mesopore volume. TTNTs are mesoporous materials with two main contributions: pores smaller than 10 nm due to the inner volume of nanotubes and larger pores within 5-60 nm attributed to the interparticles space. Chemical composition and crystal structure of TTNTs do not depend on the average crystal size of the precursor TiO2-anatase, but this parameter affects significantly the morphology and textural properties of the nanostructured product. Such dependence has been rationalized using a dissolution-recrystallization mechanism, which takes into account the dissolution rate of the starting anatase and its influence on the relative rates of growth and curving of intermediate nanosheets. The thermal stability of TTNT is defined by the sodium content and in a lower extent by the crystallinity of the starting anatase. It has been demonstrated that after losing interlayer water within the range 100-200ºC, TTNT transforms, at least partially, into an intermediate hexatitanate NaxH2−xTi6O13 still retaining the nanotubular morphology. Further thermal transformation of the nanostructured tri- and hexatitanates occurs at higher or lower temperature and follows different routes depending on the sodium content in the structure. At high sodium load (water washed samples) they sinter and grow towards bigger crystals of Na2Ti3O7 and Na2Ti6O13 in the form of rods and ribbons. In contrast, protonated TTNTs evolve to nanotubes of TiO2(B), which easily convert to anatase nanorods above 400ºC. Besides hydroxyls and Lewis acidity typical of titanium oxides, TTNTs show a small contribution of protonic acidity capable of coordinating with pyridine at 150ºC, which is lost after calcination and conversion into anatase. The isoeletric point of TTNTs was measured within the range 2.5-4.0, indicating behavior of a weak acid. Despite displaying semiconductor characteristics exhibiting typical absorption in the UV-Vis spectrum with estimated bandgap energy slightly higher than that of its TiO2 precursor, TTNTs showed very low performance in the photocatalytic degradation of cationic and anionic dyes. It was concluded that the basic reason resides in its layered titanate structure, which in comparison with the TiO2 form would be more prone to the so undesired electron-hole pair recombination, thus inhibiting the photooxidation reactions. After calcination of the protonated TTNT into anatase nanorods, the photocatalytic activity improved but not to the same level as that exhibited by its precursor anatase
Resumo:
A emergência na necessidade de se manejar os resíduos sólidos urbanos leva as administrações públicas em países centrais e periféricos a utilizarem modelos de gestão de resíduos bastante similares. A gestão dos resíduos nos países centrais é caracterizada pela eficiência na execução dos serviços (limpeza, coleta, transporte e destino final), uso de aparatos tecnológicos na execução de ditos serviços e forte tradição na separação dos materiais recicláveis a ser destinados para a reciclagem. Nos países periféricos, a gestão tradicional (coletar e descartar resíduos em lixões à céu aberto) vem sendo substituída pela gestão moderna, sobressaindo-se o controle dos resíduos em detrimento das estratégias de prevenção. Também, destaca-se a presença de trabalhadores informais que coletam e separam materiais, destinando-os à reciclagem. A partir do levantamento à referência bibliográfica especializada e na consulta a documentos oficiais e produzidos por entidades diversas, o presente artigo analisa as similitudes na gestão dos resíduos sólidos em países centrais e periféricos. A busca pela modernização nos serviços dos resíduos sem levar em conta as recomendações de documentos como a Agenda 21 caracteriza a gestão dos resíduos em países centrais e periféricos pelo ambientalismo econômico, no qual as ações de controle dos resíduos são justificadas pelos aspectos ambientais e sociais dessa gestão
Resumo:
The textile sector is one of the main contributors to the generation of industrial wastewaters due to the use of large volumes of water, which has a high organic load content. In these, it is observed to the presence of dyes, surfactants, starch, alcohols, acetic acid and other constituents, from the various processing steps of the textiles. Hence, the treatment of textile wastewater becomes fundamental before releasing it into water bodies, where they can cause disastrous physical-chemical changes for the environment. Surfactants are substances widely used in separation processes and their use for treating textile wastewaters was evaluated in this research by applying the cloud point extraction and the ionic flocculation. In the cloud point extraction was used as surfactant nonylphenol with 9.5 ethoxylation degree to remove reactive dye. The process evaluation was performed in terms of temperature, surfactant and dye concentrations. The dye removal reached 91%. The ionic flocculation occurs due to the presence of calcium, which reacts with anionic surfactant to form insoluble surfactants capable of attracting the organic matter by adsorption. In this work the ionic flocculation using base soap was applied to the treatment of synthetic wastewater containing dyes belonging to three classes: direct, reactive, and disperse. It was evaluated by the influence of the following parameters: surfactant and electrolyte concentrations, stirring speed, equilibrium time, temperature, and pH. The flocculation of the surfactant was carried out in two ways: forming the floc in the effluent itself and forming the floc before mixing it to the effluent. Removal of reactive and direct dye, when the floc is formed into textile effluent was 97% and 87%, respectively. In the case where the floc is formed prior to adding it to the effluent, the removal to direct and disperse dye reached 92% and 87%, respectively. These results show the efficience of the evaluated processes for dye removal from textile wastewaters.
Resumo:
Industrial activities like mining, electroplating and the oil extraction process, are increasing the levels of heavy metals such as Cu, Fe, Mg and Cd in aquatic ecosystems. This increase is related to the discharge of effluents containing trace of this elements above the maximum allowed by law. Methods such as ion exchange, membrane filtration and chemical precipitation have been studied as a means of treatment of these metals contamination. The precipitation of metals using anionic surfactants derived from carboxylic acids emerged as an alternative for the removal of metals from industrial effluents. The reaction between bivalent ions and these types of surfactants in aqueous solution leads to the formation of metal carboxylates, which can precipitate in the form of flakes and are subsequently removed by a process of decantation or simple filtration. In this work the metals extraction is performed by using the surfactant sodium hexadecanoate as extracting agent. The main purpose was to study the effect of temperature, solution pH, and concentration of surfactant in the metal removal process. The statistical design of the process showed that the process is directly dependent to changes in pH and concentration of surfactant, but inversely proportional and somewhat dependent to temperature variation, with the latter effect being considered negligible in most cases. The individual study of the effect of temperature showed a strong dependence of the process with the Kraft point, both for the surfactant used as extracting agent, as for the surfactant obtained after the reaction of this surfactant with the metal. From data of temperatures and concentrations of the surfactant was possible to calculate the equilibrium constant for the reaction between sodium hexadecanoate and copper ions. Later, thermodynamic parameters were determined, showing that the process is exothermic and spontaneous.
Resumo:
Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.
Resumo:
Sandstone-type reservoir rocks are commonly responsible for oil accumulation. The wettability is an important parameter for the physical properties of the container, since it interferes in characteristics such as relative permeability to the aqueous phase, residual oil distribution in the reservoir, operating characteristics with waterflood and recovery of crude oil. This study applied different types of microemulsion systems - MES - in sandstone reservoirs and evaluated their influences on wettability and residual oil recovery. For this purpose, four microemulsion were prepared by changing the nature of ionic surfactants (ionic and nonionic). Microemulsions could then be characterized by surface tension analysis, density, particle diameter and viscosity in the temperature range 30° C to 70° C. The studied oil was described as light and the sandstone rock was derived from the Botucatu formation. The study of the influence of microemulsion systems on sandstone wettability was performed by contact angle measurements using as parameters the rock treatment time with the MES and the time after the brine surface contact by checking the angle variation behavior. In the study results, the rock was initially wettable to oil and had its wettability changed to mixed wettability after treatment with MES, obtaining preference for water. Regarding rock-MES contact time, it was observed that the rock wettability changed more when the contact time between the surface and the microemulsion systems was longer. It was also noted only a significant reduction for the first 5 minutes of interaction between the treated surface and brine. The synthesized anionic surfactant, commercial cationic, commercial anionic and commercial nonionic microemulsion systems presented the best results, respectively. With regard to enhanced oil recovery performance, all systems showed a significant percentage of recovered oil, with the anionic systems presenting the best results. A percentage of 80% recovery was reached, confirming the wettability study results, which pointed the influence of this property on the interaction of fluids and reservoir rock, and the ability of microemulsion systems to perform enhanced oil recovery in sandstone reservoirs.
Resumo:
The present study examines the chemical composition and their effects on free radicals, inflammation, angiogenesis, coagulation, VEGF effects and cellular proliferation of a polysaccharides from alga Sargassum vulgare. The sulfated polysaccharide was extracted from brown seaweed by proteolysis with enzymes maxataze. The presence of proteins and sugars were observed in crude polysaccharides. Fractionation of this crude extract was made with growing concentration of acetone (0.3-1.5 v) and produced four groups of polysaccharides. Anionic polysaccharides from brown seaweed Sargassum vulgare, SV1and PSV1 were fractionated (SV1) and purified (PSV1), and displayed with high total sugars and sulfate content and very low level of protein. This fucan SV1 contains low levels of protein and high carbohydrate and sulfate content. This polysaccharides prolonged activated partial thromboplastin time (aPTT) at 50 μg (>240 s). SV1 was found to have no effect on prothrombin time (PT), corresponding to the extrinsic pathway of coagulation. SV1 exhibits high antithrombotic action in vivo, with a concentration ten times higher than heparin. Polysaccharides from S. vulgare promoted direct inhibition enzymatic activity of thrombin and stimulated enzymatic activity of FXa. SV1 showed optimal inhibitory activity of thrombin (50.2±0.28%) at a concentration of 25 μg/mL. Its antioxidant action on scavenging radicals by DPPH was (22%), indicating the polymer has no cytotoxic action (hemolytic) on ABO and Rh blood types in different erythrocyte groups and displays strong anti-inflammatory action on all concentrations tested in the carrageenan-induced paw edema model, demonstrated by reduced edema and cellular infiltration. Angiogenesis is a dynamic process of proliferation and differentiation. It requires endothelial proliferation, migration, and tube formation. In this context, endothelial cells are a preferred target for several studies and therapies. The antiangiogenic efficacy of polysaccharides was examined in vivo in the chick chorioallantoic membrane (CAM) model by using fertilized eggs. Decreases in the density of the capillaries were assessed and scored. The results showed that SV1 and PSV1 have an inhibitory effect on angiogenesis. These results were also confirmed by inhibition tubulogenesis in rabbit aorta endothelial cell (RAEC) in matrigel. These compounds were assessed in Apoptosis assay (Annexin V - FITC / PI) and cell viability by MTT assay of RAEC. These polysaccharides do not affect the viability and do not have apoptotic or necrotic action. RAEC cell when incubated with SV1 and PSV1showed inhibition of VEGF secretion, observed when compounds were incubated at 25, 50 and 100 μg/μL. The VEGF secretion with the RAEC cell line for 24 h, was more effective for PSV1 at 50 μg/μL(71.4%) than SV1 100 μg/μL (75.9%). SV1 and PSV1 had an antiproliferative action (47%) against tumor cell line HeLa. Our results indicate that these sulfated polysaccharides have antiangiogenic and antitumoral actions
Resumo:
In Brazil, accidents with scorpions are considered of medical importance, not only by the high incidence, but also for the potentiality of the venom from some species in determining severe clinical conditions. Tityus stigmurus is a widely distributed scorpion species in Northeastern Brazil and known to cause severe human envenomations, inducing pain, hyposthesia, edema, erythema, paresthesia, headaches and vomiting. The present study uses a transcriptomic approach to characterize the molecular repertoire from the non-stimulated venom gland of Tityus stigmurus scorpion. A cDNA library was constructed and 540 clones were sequenced and grouped into 37 clusters, with more than one EST (expressed sequence tag) and 116 singlets. Forty-one percent of ESTs belong to recognized toxin-coding sequences, with antimicrobial toxins (AMP-like) the most abundant transcripts, followed by alfa KTx- like, beta KTx-like, beta NaTx-like and alfa NaTx-like. Our analysis indicated that 34% include other possible venom molecules , whose transcripts correspond to anionic peptides, hypothetical secreted peptides, metalloproteinases, cystein-rich peptides and lectins. Fifteen percent of ESTs are similar to cellular transcripts. Sequences without good matches corresponded to 11%. This investigation provides the first global view of cDNAs from Tityus stigmurus. This approach enables characterization of a large number of venom gland component molecules, which belong either to known or atypical types of venom peptides and proteins from the Buthidae family
Resumo:
Sulfated polysaccharides comprise a complex group of macromolecules with a range of several biological activities, including antiviral activity, anticoagulant, antiproliferative, antiherpética, antitumor, anti-inflammatory and antioxidant. These anionic polymers are widely distributed in tissues of vertebrates, invertebrates and algae. Seaweeds are the most abundant sources of sulfated polysaccharides in nature. The green algal sulfated polysaccharides are homo or heteropolysaccharides comprised of galactose, glucose, arabinose and/or glucuronic acid. They are described as anticoagulant, anti-inflammatory, antiviral, anti-angiogenic, antitumor compounds. However, there are few studies about elucidation and evaluation of biological/pharmacological effects of sulfated polysaccharides obtained from green algae, for example, there is only one paper reporting the antinociceptive activity of sulfated polysaccharides of these algae. Therefore this study aimed to obtain sulfated polysaccharides of green seaweed Codium isthmocladum and evaluates them as potential antinociceptive agents. Thus, in this study, the total extract of polysaccharides of green alga C. isthmocladum was obtained by proteolytic digestion, followed by fractionation resulting in five fractions (F0.3, F0.5, F0.7, F0.9 and F1.2) by sequential precipitation with acetone. Using the test of abdominal contractions we observed that the fraction F0.9 was the most potent antinociceptive aompound. F0.9 consists mainly of a sulfated heterogalactana. More specific tests showed that Fo.9 effect is dose and time dependent, reaching a maximum at 90 after administration (10 mg / kg of animal). F0.9 is associated with TRPV1 and TRPA1 receptors and inhibits painful sensation in animals. Furthermore, F0.9 inhibits the migration of lymphocytes induced peritonitis test. On the other hand, stimulates the release of NO and TNF-α. These results suggest that F0.9 has the potential to be used as a source of sulfated galactan antinociceptive and anti-inflammatory