20 resultados para Vegetation and shading


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Brazilian coast has a wide variety of complex environments and ecosystems along the coast, about 80% are represented by sandbanks and dunes. The coastal ecosystems were the first to suffer the impacts man and places, as the very fragile ecosystems, are somehow altered. Are few areas of restinga well as natural features, very few protected in conservation units. Only in the last two decades the Brazilian restinga have been studies that are showing their importance for biodiversity of the country, though its economic importance remains largely unknown. In Rio Grande do Norte in the restinga vegetation and dune environments extend for almost the entire coast. The dunes are distinguished in the coastal landscape of the state due to the exuberance of its forms, heights and coating plants. The dune system is of fundamental importance for the maintenance of coastal urban settlements, especially for the city of Natal, acting on the hydrological dynamics of water table and reducing the effect of wind and movement of grains of sand to the interior and thus avoiding the burial City. However, the ecosystem of restinga and dune environments have been weakened and destroyed according to the intense urbanization and the knowledge of the vegetation of restinga installed on the dunes are still scarce. Thus, the objective of this study was to characterize the structure and floristic composition of vegetation established on a dune in the Dunes State Park Christmas and gather information to develop a model of recovery of the dune ecosystem. This dissertation is composed of 2 chapters, the first being: Structure of the vegetation of the dunes Dunes State Park in Natal, RN with the objective of describing the structure and composition of species of tree-shrub vegetation of restinga dunes of the Parque das Dunas and second: Recovery of degraded areas in a sand dune, which aimed to review the terms and concepts used in the theme of recovery and the techniques for recovery of degraded areas with emphasis on sandy environments and poor in nutrients, reporting some experiences within and external to Brazil the country, mainly in the Northeast and dunes positive and negative aspects that should be followed in building a model to be adopted for the recovery of local dunes

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mangrove is a coastal ecosystem of the big ecological importance, showing high fragility front by natural process and the human interventions in the coastal zone. This research has objective to analyses the relation between mangrove species distribution and geochemical parameters variation of the water and soil in Apodi/Mossoro estuary, located in the Rio Grande do Norte state north coastline. The results were obtained from floristic and structural analysis of the vegetation and Quick Bird satellite images interpretation (collected in 2006 year), manipulated with ENVI 4.3 and ArcGIS 9.2 software s. This estuary was characterized by to presents a gradient of the salinity around 40 kilometers extension, finding amount between 50 and 90 g/l-1. Will be identified the formation of the mix vegetation formation in the estuary mount, where the water salinity no show express wide variation on seawater (36 g/l-1), finding species: Rhizophora mangle L., Laguncularia racemosa (L.) C. F. Gaertn, Avicennia schaueriana Stap. & Leechman e Avicennia germinans L. Along of the estuary, have a streak formation of the vegetation composed by Avicennia spp. and L. racemosa. In high estuary, where the salinities value stay above 60 g/l-1, only A. germinans predominate in dwarf form. In this sense, the salinity is as a limiting factor of stress on the mangrove vegetation as it enters the estuary, this parameter should be taken into account when drawing up management plans and environmental restoration in the estuary in question

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work embraces the application of Landsat 5-TM digital images, comprising August 2 1989 and September 22 1998, for temporal mapping and geoenvironmental analysis of the dynamic of Piranhas-Açu river mouth, situated in the Macau (RN) region. After treatment using several digital processing techniques (e.g. colour composition in RGB, ratio of bands, principal component analysis, index methods, among others), it was possible to generate several image products and multitemporal maps of the coastal morphodynamics of the studied area. Using the image products it was possible the identification and characterization of the principal elements of interest (vegetation, soil, geology and water) in the surface of the studied area, associating the spectral characteristics of these elements to that presented by the image products resulting of the digital processing. Thus, it was possible to define different types of soils: Amd, AQd6, SK1 and LVe4; vegetation grouping: open arboreal-shrubby caatinga, closed arborealshrubby caatinga, closed arboreal caatinga, mangrove vegetation, dune vegetation and areas predominately constituted by juremas; geological units: quaternary units beach sediments, sand banks, dune flats, barrier island, mobile dunes, fixed dunes, alluvium, tidal and inundation flats, and sandy facies of the Potengi Formation; tertiary-quaternary units Barreiras Formation grouped to the clayey facies of the Potengi Formation, Macau Formation grouped to the sediments of the Tibau Formation; Cretaceous units Jandaíra Formation; moreover it was to identify the sea/land limit, shallow submersed areas and suspended sediments. The multitemporal maps of the coastal morphodynamics allowed the identification and a semi-quantitative evoluation of regions which were submitted to erosive and constructive processes in the last decade. This semi-quantitative evoluation in association with an geoenvironmental characterization of the studied area are important data to the elaboration of actions that may minimize the possible/probable impacts caused by the implantation of the Polo Gas/Sal and to the monitoring of areas explorated by the petroleum and salt industries

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a study on the environmental vulnerability of the coastal region of Pititinga, Rio do Fogo/RN. The coastal erosion of Pititinga beach was analyzed and considerated as one more process that produces environmental vulnerability in the area of study, taking into account its human and natural environment and establishing the relation between them, to understand the arrangement that produced its spatial configuration. The natural environment was expressed by thematics maps with geology, geomorphology, vegetation and soil themes, while the human environment was expressed by the use and occupation of the soil map. The coastal erosion was put in an erosion vulnerability map. The methodological procedure to generate the thematics maps, vulnerability maps and of the erosion coastal involved the bibliographic research, field visits with check-list form fill, collect and analysis of sediment sample, photo-interpretation techniques, integration of the information in a database, data store and spatial analysis in a Geographic Information System (GIS) ambient. The natural vulnerability map shows a predominancy of environments with low (29,6%) or medium (42,4%) vulnerability, pointed the frontal and mobile dune as the areas with the highest vulnerability. The environmental vulnerability map, presents a predominancy of environments with low vulnerability (53,8%), with the high vulnerability concentrated on Pititinga community. The coastal erosion vulnerability presented distinct behaviors on three sections among the coastal line according each one characteristics. Where there are frontal and transgressive dunes, vulnerability are, generally, medium or low, respectively, and in the absence of them, as what occurs in Pititinga community, the vulnerability is predominately very high

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study includes the results of the analysis of areas susceptible to degradation by remote sensing in semi-arid region, which is a matter of concern and affects the whole population and the catalyst of this process occurs by the deforestation of the savanna and improper practices by the use of soil. The objective of this research is to use biophysical parameters of the MODIS / Terra and images TM/Landsat-5 to determine areas susceptible to degradation in semi-arid Paraiba. The study area is located in the central interior of Paraíba, in the sub-basin of the River Taperoá, with average annual rainfall below 400 mm and average annual temperature of 28 ° C. To draw up the map of vegetation were used TM/Landsat-5 images, specifically, the composition 5R4G3B colored, commonly used for mapping land use. This map was produced by unsupervised classification by maximum likelihood. The legend corresponds to the following targets: savanna vegetation sparse and dense, riparian vegetation and exposed soil. The biophysical parameters used in the MODIS were emissivity, albedo and vegetation index for NDVI (NDVI). The GIS computer programs used were Modis Reprojections Tools and System Information Processing Georeferenced (SPRING), which was set up and worked the bank of information from sensors MODIS and TM and ArcGIS software for making maps more customizable. Initially, we evaluated the behavior of the vegetation emissivity by adapting equation Bastiaanssen on NDVI for spatialize emissivity and observe changes during the year 2006. The albedo was used to view your percentage of increase in the periods December 2003 and 2004. The image sensor of Landsat TM were used for the month of December 2005, according to the availability of images and in periods of low emissivity. For these applications were made in language programs for GIS Algebraic Space (LEGAL), which is a routine programming SPRING, which allows you to perform various types of algebras of spatial data and maps. For the detection of areas susceptible to environmental degradation took into account the behavior of the emissivity of the savanna that showed seasonal coinciding with the rainy season, reaching a maximum emissivity in the months April to July and in the remaining months of a low emissivity . With the images of the albedo of December 2003 and 2004, it was verified the percentage increase, which allowed the generation of two distinct classes: areas with increased variation percentage of 1 to 11.6% and the percentage change in areas with less than 1 % albedo. It was then possible to generate the map of susceptibility to environmental degradation, with the intersection of the class of exposed soil with varying percentage of the albedo, resulting in classes susceptibility to environmental degradation