18 resultados para Vegetal roofs
Resumo:
Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.
Resumo:
Composite materials arise from the need for lighter materials and with bigger mechanical and thermal resistance. The difficulties of discard, recycling or reuse are currently environmental concerns and, therefore, they are study object of much researches. In this perspective the feasibility of using loofahs (Luffa Cylindrica) for obtainment of a polymeric matrix composite was studied. Six formulations, with 4, 5 and 6 treated layers and untreated, were tested. The loofahs were treated in boiling water to remove lignins, waxes and impurities present in the fibers. After that, they were dried in a direct exposure solar dryer. For the characterization of the composite, thermal (thermal conductivity, thermal capacity, thermal diffusivity and thermal resistivity), mechanical (tensile and bending resistance) and physicochemical (SEM, XRD, density, absorption and degradation) properties were determined. The proposed composite has as advantage the low fiber density, which is around 0.66 g/cm³ (almost half of the polyester resin matrix), resulting in an average composite density of around 1.17g/cm³, 6.0 % lower in relation to the matrix. The treatment carried out in the loofahs increased the mechanical strength of the composite and decreased the humidity absorption. The composite showed lower mechanical behavior than the matrix for all the formulations. The composite also demonstrated itself to be feasible for thermal applications, with a value of thermal conductivity of less than 0.159 W/m.K, ranking it as a good thermal insulator. For all formulations/settings a low adherence between fibers and matrix occurred, with the presence of cracks, showing the fragility due to low impregnation of the fiber by the matrix. This composite can be used to manufacture structures that do not require significant mechanical strength, such as solar prototypes, as ovens and stoves.
Resumo:
Actually in the oil industry biotechnological approaches represent a challenge. In that, attention to metal structures affected by electrochemical corrosive processes, as well as by the interference of microorganisms (biocorrosion) which affect the kinetics of the environment / metal interface. Regarding to economical and environmental impacts reduction let to the use of natural products as an alternative to toxic synthetic inhibitors. This study aims the employment of green chemistry by evaluating the stem bark extracts (EHC, hydroalcoholic extract) and leaves (ECF, chloroform extract) of plant species Croton cajucara Benth as a corrosion inhibitor. In addition the effectiveness of corrosion inhibition of bioactive trans-clerodane dehydrocrotonin (DCTN) isolated from the stem bark of this Croton was also evaluated. For this purpose, carbon steel AISI 1020 was immersed in saline media (3,5 % NaCl) in the presence and absence of a microorganism recovered from a pipeline oil sample. Corrosion inhibition efficiency and its mechanisms were investigated by linear sweep voltammetry and electrochemical impedance. Culture-dependent and molecular biology techniques were used to characterize and identify bacterial species present in oil samples. The tested natural products EHC, ECF and DCTN (DMSO as solvent) in abiotic environment presented respectively, corrosion inhibition efficiencies of 57.6% (500 ppm), 86.1% (500 ppm) and 54.5% (62.5 ppm). Adsorption phenomena showed that EHC best fit Frumkin isotherm and ECF to Temkin isotherm. EHC extract (250 ppm) dissolved in a polar microemulsion system (MES-EHC) showed significant maximum inhibition efficiency (93.8%) fitting Langmuir isotherm. In the presence of the isolated Pseudomonas sp, EHC and ECF were able to form eco-compatible organic films with anti-corrosive properties