23 resultados para Temperatura efectiva
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
The bio-oil obtained from the pyrolysis of biomass has appeared as inter-esting alternative to replace fossil fuels. The aim of this work is to evaluate the influence of temperature on the yield of products originating from the pyrolysis process of the powder obtained from the dried twigs of avelós (Euphorbia tirucalli), using a rotating cylinder reactor in laboratory scale. The biomass was treated and characterized by: CHNS, moisture, volatiles, fixed carbon and ashes, as well as evaluation of lignin, cellulose and hemicellulose, besides other instrumental techniques such as: FTIR, TG/DTG, DRX, FRX and MEV. The activation energy was evaluated in non-isothemichal mode with heating rates of 5 and 10 oC/min. The obtained results showed biomass as feedstock with potential for biofuel production, because presents a high organic matter content (78,3%) and fixed-carbon (7,11%). The activation energy required for the degradation of biomass ranged between 232,92 392,84 kJ/mol, in the temperature range studied and heating rate of 5 and 10°C/min. In the pyrolysis process, the influence of the reaction temperature was studied (350-520 ° C), keeping constant the other variables, such as, the flow rate of carrier gas, the centrifugal speed for the bio-oil condensationa, the biomass flow and the rotation of the reactor. The maximum yield of bio-oil was obtained in the temperature of 450°C. In this temperature, the results achieved where: content of bio-oil 8,12%; char 32,7%; non-condensed gas 35,4%; losts 23,8%; gross calorific value 3,43MJ/kg; pH 4,93 and viscosity 1,5cP. The chromatographic analysis of the bio-oil produced under these conditions shows mainly the presence of phenol (17,71%), methylciclopentenone (10,56%) and dimethylciclopentenone (7,76%)
Resumo:
This work aims at studying the influence of the concentration of calcite, its grain size and sintering temperature to obtain porous coating formulations that meet the design specifications. The experiments involved the physical-chemical and mineralogical caracterization of the raw materials, and mechanical tests on specimens dried and sintered, performing a planning mixture and factorial experiment, using the response surface methodology. The ceramic bodies studied were prepared by dry process, characterized, placed in conformity by uniaxial pressing and sintered at temperatures of 940 º C, 1000ºC, 1060ºC, 1120°C and 1180°C using a fast-firing cycle. The crystalline phases formed during sintering at temperatures under study, revealed the presence of anorthite and wolastonite, and quartz-phase remaining. These phases were mainly responsible for the physical and mechanical properties of the sintered especimens. The results shown that as increases the participation of carbonate in the composition of ceramic bodies there is an increase of water absorption and a slight reduction in linear shrinkage for all sintering temperatures. As for the mechanical strength it was observed that it tended to decrease for sintering at temperatures between 940 ° C and 1060 ° C and to increase for sintering at temperatures above 1060 ° C occurring with greater intensity for compositions with higher content of calcite. The resistence decreased with increasing participation of quartz in all sintering temperatures. The decrease in grain size of calcite caused a slight increase in water absorption for formulation with the same concentration of carbonate, remaining virtually unchanged the results of linear shrinkage and mechanical strength. In conclusion, porous ceramic coating (BIII) can be obtained using high concentrations of calcite and keeping the properties required in technical standards and that the particle size of calcite can be used as tuning parameter for the properties of ceramic products.
Resumo:
This piece of work has investigated the alternative conceptions shown by students of secondary school, concerned to the concepts of warmth and temperature, aiming the elaboration and application of a learning strategy as of the diagnose risen from the conceptions present in students. The learning strategy was built up by a sequence of activities that involve History of Science and experiments, put in a course that had as a base the proposal of the Group of Redevelopment of Physics Teaching (GREF). We have used as the conductor wire of our research the development of thermo dynamics since the development of the first thermo machines, passing by the Industrial Revolution and the evolution of concepts of warmth and temperature. The learning strategy was applied to a group of second grade of secondary school in a public school in Mossoró (RN). By doing these activities we tried to become the concepts, which are part of thermo dynamics, more meaningful to the students. We have estimated that the application of the strategy has represented some profits to the students of the group, concerning to learning of laws and concepts of thermo dynamics (specifically the concepts of warmth and temperature), as well as what it is referred to the overcoming of its initial conceptions
Resumo:
The shrimp Litopenaeus vannamei has been grown in highly variable environments, especially in relation to salinity and water temperature. The adjustment to such conditions mainly involves changes in behavior, physiology, particularly in the immune response. This may consequently reduce the welfare of these animals. Despite the widespread farming of the species, little is known about their behavioral and physiological responses under stressful conditions. Thus, the objective of this study was to assess the influence of different salinities and temperatures in the behavior of the marine shrimp L. vannamei, and its relation to the total hemocytes count. In the laboratory, juvenile shrimp were kept in glass aquaria with a closed water recirculation system, continuous aeration and filtration, and under a 12:12 h light/dark cycle. Behavioral observations occurred 1, 4, 7 and 10 h after the start of each phase (light or dark). To assess the influence of salinity, shrimp were first acclimated and then observed at 2, 30 or 50 ppm salinity water, while temperatures tested were 18, 28 and 33 ° C. At the end of each experiment (30 days), shrimp hemolymph was collected for subsequent total hemocytes count (THC), a parameter used to assess stress. In general, feeding behavior was modified under lower salinity and temperature, with reduced values in feeding, exploration and digestive tract filling. Inactivity and burrowing were prevalent under extreme conditions water salinity and temperature, respectively: 2 and 50 ppm and 18 and 33 ° C; crawling was also less frequent under these conditions. In regards to light/dark cycle, shrimp were more active during the dark phase (crawling and swimming), while burrowing was higher during the light phase, regardless of salinity or temperature of the water. Inactivity behavior did not vary according to the light/dark cycle. Moreover, the total hemocytes count (THC) was reduced under 2 and 50 ppm salinity and 18 ° C temperature. Farming of L. vannamei under extremely low or high salinities and low temperatures is harmful. This suggests the species must be cultivated in salinities closer to those of the sea as well as at high temperatures, which seems to be ideal for a management focused on animal welfare, therefore, producing healthier shrimp
Resumo:
Food is essential for the survival of all animals. Its temporal availability is an important enviromental cue for the behavioral and physiological organization throughout the 24 hours of day in different species. Rats and mice, for example, show increased locomotion in the hours before food availability when it is presented in a recurrent manner, a behavior named foodanticipatory activity. Several lines of evidence indicate that this anticipation is mediated by a circadian oscillator. In this work, based on the hypothesis that pre- or post-ingestive humoral signals are involved in the entrainment process, we tested whether the daily intake of glucose is sufficient to induce anticipatory activity in rats. The rhythms of motor activity and central temperature were recorded in animals undergoing 10 days of temporal glucose (solution at 50%) or chow restriction in light-dark (LD) and constant darkness (DD). Animals under temporal glucose restriction increase motor activity and and central temperature in the hours preceding glucose availability and such aticipation is extremely similar to that observed in animals under temporal chow restriction. Glucose ingestion is, therefore, a sufficient temporal cue to induce anticipation in rats. It is possible that the increase in plasma glucose after food ingestion constitutes one of the signals involved in the behavioral entrainment process to food availability
Resumo:
The present study describes the stability and rheological behavior of suspensions of poly (N-isopropylacrylamide) (PNIPAM), poly (N-isopropylacrylamide)-chitosan (PNIPAMCS), and poly (N-isopropylacrylamide)-chitosan-poly (acrylic acid) (PNIPAM-CS-PAA) crosslinked particles sensitive to pH and temperature. These dual-sensitive materials were simply obtained by one-pot method, via free-radical precipitation copolymerization with potassium persulfate, using N,N -methylenebisacrylamide (MBA) as a crosslinking agent. Incorporation of the precursor materials into the chemical networks was confirmed by elementary analysis and infrared spectroscopy. The influence of external stimuli such as pH and temperature, or both, on particle behavior was investigated through rheological measurements, visual stability tests and analytical centrifugation. The PNIPAM-CS particles showed higher stability in acid and neutral media, whereas PNIPAM-CS-PAA particles were more stable in neutral and alkaline media, both below and above the LCST of poly (Nisopropylacrylamide) (stability data). This is due to different interparticle interactions, as well as those between the particles and the medium (also evidenced by rheological data), which were also influenced by the pH and temperature of the medium. Based on the results obtained, we found that the introduction of pH-sensitive polymers to crosslinked poly (Nisopropylacrylamide) particles not only produced dual-sensitive materials, but allowed particle stability to be adjusted, making phase separation faster or slower, depending on the desired application. Thus, it is possible to adapt the material to different media
Resumo:
Orbital remote sensing has been used as a beneficial tool in improving the knowledge on oceanographic and hydrodynamic aspects in northern portion of the continental shelf of Rio Grande do Norte, offshore Potiguar Basin. Aspects such as geography, temporal and spatial resolution combined with a consistent methodology and provide a substantial economic advantage compared to traditional methods of in situ data collecting. Images of the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard NASA's AQUA satellite were obtained to support systematic data collections related to the campaign of environmental monitoring and characterization of Potiguar Basin, held in May 2004. Images of Total Suspension Matter (TSM) and values of radiance standard were generated for the calculation of concentrations of total suspension matter (TSM), chlorophyll-a and sea surface temperature (SST). These data sets were used for statistical comparisons between measures in situ and satellite estimates looking validate algorithms or develop a comprehensive regional approach empirically. AQUA-MODIS images allowed the simultaneous comparison of two-dimensional water quality (total suspension matter), phytoplankton biomass (chlorophyll-a) variability and physical (temperature). For images of total suspension matter, the generated models showed a good correlation with the field data, allowing quantitative and qualitative analysis. The images of chlorophyll-a showed a consistent correlation with the in situ values of concentration. The algorithms adjusted for these images obtained a correlation coefficient fairly well with the data field in order that the sensor can be having an effect throughout the water column and not just the surface. This has led to a fit between the data of chlorophyll-the integration of the average sampling interval of the entire water column up to the level of the first optical depth, with the data generated from the images. This method resulted in higher values of chlorophyll concentration to greater depths, due to the fact that we are integrating more values of chlorophyll in the water column. Thus we can represent the biomass available in the water column. Images SST and SST measures in situ showed a mean difference DT (SST insitu - SST sat) around -0.14 ° C, considered low, making the results very good. The integration of total suspension matter, chlorophyll-a, the temperature of the sea surface (SST) and auxiliary data enabled the recognition of some of the main ways to fund the continental shelf. The main features highlighted were submerged canyons of rivers Apodi and Açu, some of the lines and beachrocks reefs, structural highs and the continental shelf break which occurs at depths around -60 m. The results confirmed the high potential for use of the AQUA-MODIS images to environmental monitoring of sea areas due to ease of detection of the field two-dimensional material in suspension on the sea surface, temperature and the concentration of chlorophyll-a