63 resultados para Sistemas variantes no tempo
Resumo:
In this work we use Interval Mathematics to establish interval counterparts for the main tools used in digital signal processing. More specifically, the approach developed here is oriented to signals, systems, sampling, quantization, coding and Fourier transforms. A detailed study for some interval arithmetics which handle with complex numbers is provided; they are: complex interval arithmetic (or rectangular), circular complex arithmetic, and interval arithmetic for polar sectors. This lead us to investigate some properties that are relevant for the development of a theory of interval digital signal processing. It is shown that the sets IR and R(C) endowed with any correct arithmetic is not an algebraic field, meaning that those sets do not behave like real and complex numbers. An alternative to the notion of interval complex width is also provided and the Kulisch- Miranker order is used in order to write complex numbers in the interval form enabling operations on endpoints. The use of interval signals and systems is possible thanks to the representation of complex values into floating point systems. That is, if a number x 2 R is not representable in a floating point system F then it is mapped to an interval [x;x], such that x is the largest number in F which is smaller than x and x is the smallest one in F which is greater than x. This interval representation is the starting point for definitions like interval signals and systems which take real or complex values. It provides the extension for notions like: causality, stability, time invariance, homogeneity, additivity and linearity to interval systems. The process of quantization is extended to its interval counterpart. Thereafter the interval versions for: quantization levels, quantization error and encoded signal are provided. It is shown that the interval levels of quantization represent complex quantization levels and the classical quantization error ranges over the interval quantization error. An estimation for the interval quantization error and an interval version for Z-transform (and hence Fourier transform) is provided. Finally, the results of an Matlab implementation is given
Resumo:
This work develops a robustness analysis with respect to the modeling errors, being applied to the strategies of indirect control using Artificial Neural Networks - ANN s, belong to the multilayer feedforward perceptron class with on-line training based on gradient method (backpropagation). The presented schemes are called Indirect Hybrid Control and Indirect Neural Control. They are presented two Robustness Theorems, being one for each proposed indirect control scheme, which allow the computation of the maximum steady-state control error that will occur due to the modeling error what is caused by the neural identifier, either for the closed loop configuration having a conventional controller - Indirect Hybrid Control, or for the closed loop configuration having a neural controller - Indirect Neural Control. Considering that the robustness analysis is restrict only to the steady-state plant behavior, this work also includes a stability analysis transcription that is suitable for multilayer perceptron class of ANN s trained with backpropagation algorithm, to assure the convergence and stability of the used neural systems. By other side, the boundness of the initial transient behavior is assured by the assumption that the plant is BIBO (Bounded Input, Bounded Output) stable. The Robustness Theorems were tested on the proposed indirect control strategies, while applied to regulation control of simulated examples using nonlinear plants, and its results are presented
Resumo:
The predictive control technique has gotten, on the last years, greater number of adepts in reason of the easiness of adjustment of its parameters, of the exceeding of its concepts for multi-input/multi-output (MIMO) systems, of nonlinear models of processes could be linearised around a operating point, so can clearly be used in the controller, and mainly, as being the only methodology that can take into consideration, during the project of the controller, the limitations of the control signals and output of the process. The time varying weighting generalized predictive control (TGPC), studied in this work, is one more an alternative to the several existing predictive controls, characterizing itself as an modification of the generalized predictive control (GPC), where it is used a reference model, calculated in accordance with parameters of project previously established by the designer, and the application of a new function criterion, that when minimized offers the best parameters to the controller. It is used technique of the genetic algorithms to minimize of the function criterion proposed and searches to demonstrate the robustness of the TGPC through the application of performance, stability and robustness criterions. To compare achieves results of the TGPC controller, the GCP and proportional, integral and derivative (PID) controllers are used, where whole the techniques applied to stable, unstable and of non-minimum phase plants. The simulated examples become fulfilled with the use of MATLAB tool. It is verified that, the alterations implemented in TGPC, allow the evidence of the efficiency of this algorithm
Resumo:
The present work presents an algorithm proposal, which aims for controlling and improving idle time to be applied in oil production wells equipped with beam pump. The algorithm was totally designed based on existing papers and data acquired from two Potiguar Basin pilot wells. Oil engineering concepts such as submergence, pump off, Basic Sediments and Water (BSW), Inflow Performance Relationship (IPR), reservo ir pressure, inflow pressure, among others, were included into the algorithm through a mathematical treatment developed from a typical well and then extended to the general cases. The optimization will increase the well production potential maximum utilization having the smallest number of pumping unit cycles directly reflecting on operational cost and electricity consumption reduction
Resumo:
The lava Platform is increasing1y being adopted in the development of distributed sys¬tems with higb user demando This kind of application is more complex because it needs beyond attending the functional requirements, to fulfil1 the pre-established performance parameters. This work makes a study on the Java Vutual Machine (JVM), approaching its intemal aspects and exploring the garbage collection strategies existing in the literature and used by the NM. It also presents a set of tools that helps in the job of optimizing applications and others that help in the monitoring of applications in the production envi¬ronment. Doe to the great amount of technologies that aim to solve problems which are common to the application layer, it becomes difficult to choose the one with best time response and less memory usage. This work presents a brief introduction to each one of tbe possible technologies and realize comparative tests through a statistical analysis of the response time and garbage collection activity random variables. The obtained results supply engineers and managers with a subside to decide which technologies to use in large applications through the knowledge of how they behave in their environments and the amount of resources that they consume. The relation between the productivity of the technology and its performance is also considered ao important factor in this choice
Resumo:
This master dissertation introduces a study about some aspects that determine the aplication of adaptative arrays in DS-CDMA cellular systems. Some basics concepts and your evolution in the time about celular systems was detailed here, meanly the CDMA tecnique, specialy about spread-codes and funtionaly principies. Since this, the mobile radio enviroment, with your own caracteristcs, and the basics concepts about adaptive arrays, as powerfull spacial filter was aborded. Some adaptative algorithms was introduced too, these are integrants of the signals processing, and are answerable for weights update that influency directly in the radiation pattern of array. This study is based in a numerical analysis of adaptative array system behaviors related to the used antenna and array geometry types. All the simulations was done by Mathematica 4.0 software. The results for weights convergency, square mean error, gain, array pattern and supression capacity based the analisis made here, using RLS (supervisioned) and LSDRMTA (blind) algorithms
Resumo:
RFID (Radio Frequency Identification) identifies object by using the radio frequency which is a non-contact automatic identification technique. This technology has shown its powerful practical value and potential in the field of manufacturing, retailing, logistics and hospital automation. Unfortunately, the key problem that impacts the application of RFID system is the security of the information. Recently, researchers have demonstrated solutions to security threats in RFID technology. Among these solutions are several key management protocols. This master dissertations presents a performance evaluation of Neural Cryptography and Diffie-Hellman protocols in RFID systems. For this, we measure the processing time inherent in these protocols. The tests was developed on FPGA (Field-Programmable Gate Array) platform with Nios IIr embedded processor. The research methodology is based on the aggregation of knowledge to development of new RFID systems through a comparative analysis between these two protocols. The main contributions of this work are: performance evaluation of protocols (Diffie-Hellman encryption and Neural) on embedded platform and a survey on RFID security threats. According to the results the Diffie-Hellman key agreement protocol is more suitable for RFID systems
Resumo:
We propose a new approach to reduction and abstraction of visual information for robotics vision applications. Basically, we propose to use a multi-resolution representation in combination with a moving fovea for reducing the amount of information from an image. We introduce the mathematical formalization of the moving fovea approach and mapping functions that help to use this model. Two indexes (resolution and cost) are proposed that can be useful to choose the proposed model variables. With this new theoretical approach, it is possible to apply several filters, to calculate disparity and to obtain motion analysis in real time (less than 33ms to process an image pair at a notebook AMD Turion Dual Core 2GHz). As the main result, most of time, the moving fovea allows the robot not to perform physical motion of its robotics devices to keep a possible region of interest visible in both images. We validate the proposed model with experimental results
Resumo:
The incorporate of industrial automation in the medical are requires mechanisms to safety and efficient establishment of communication between biomedical devices. One solution to this problem is the MP-HA (Multicycles Protocol to Hospital Automation) that down a segmented network by beds coordinated by an element called Service Provider. The goal of this work is to model this Service Provider and to do performance analysis of the activities executed by in establishment and maintenance of hospital networks
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Resumo:
The public illumination system of Natal/RN city presents some recurring problems in the aspect of monitoring, since currently is not possible to detect in real time the light bulbs which are on throughout the day, or those which are off or burned out, at night. These factors depreciate the efficiency of the services provided, as well as, the use of energetic resources, because there is energetic waste and, consequently, financial resources that could be applied at the own public system illumination. The purpose of the work is create a prototype in substitution to the currently photoelectric relays used at public illumination, that have the same function, as well others: turn on or off the light bulbs remotely (control flexibility by the use of specifics algorithms supervisory), checking the light bulbs status (on or off) and wireless communication with the system through the ZigBee® protocol. The development steps of this product and the tests carried out are related as a way to validate and justify its use at the public illumination
Resumo:
Several mobile robots show non-linear behavior, mainly due friction phenomena between the mechanical parts of the robot or between the robot and the ground. Linear models are efficient in some cases, but it is necessary take the robot non-linearity in consideration when precise displacement and positioning are desired. In this work a parametric model identification procedure for a mobile robot with differential drive that considers the dead-zone in the robot actuators is proposed. The method consists in dividing the system into Hammerstein systems and then uses the key-term separation principle to present the input-output relations which shows the parameters from both linear and non-linear blocks. The parameters are then simultaneously estimated through a recursive least squares algorithm. The results shows that is possible to identify the dead-zone thresholds together with the linear parameters
Resumo:
This master dissertation introduces a study about some aspects that determine the aplication of adaptative arrays in DS-CDMA cellular systems. Some basics concepts and your evolution in the time about celular systems was detailed here, meanly the CDMA tecnique, specialy about spread-codes and funtionaly principies. Since this, the mobile radio enviroment, with your own caracteristcs, and the basics concepts about adaptive arrays, as powerfull spacial filter was aborded. Some adaptative algorithms was introduced too, these are integrants of the signals processing, and are answerable for weights update that influency directly in the radiation pattern of array. This study is based in a numerical analysis of adaptative array system behaviors related to the used antenna and array geometry types. All the simulations was done by Mathematica 4.0 software. The results for weights convergency, square mean error, gain, array pattern and supression capacity based the analisis made here, using RLS (supervisioned) and LSDRMTA (blind) algorithms.
Resumo:
The seismic method is of extreme importance in geophysics. Mainly associated with oil exploration, this line of research focuses most of all investment in this area. The acquisition, processing and interpretation of seismic data are the parts that instantiate a seismic study. Seismic processing in particular is focused on the imaging that represents the geological structures in subsurface. Seismic processing has evolved significantly in recent decades due to the demands of the oil industry, and also due to the technological advances of hardware that achieved higher storage and digital information processing capabilities, which enabled the development of more sophisticated processing algorithms such as the ones that use of parallel architectures. One of the most important steps in seismic processing is imaging. Migration of seismic data is one of the techniques used for imaging, with the goal of obtaining a seismic section image that represents the geological structures the most accurately and faithfully as possible. The result of migration is a 2D or 3D image which it is possible to identify faults and salt domes among other structures of interest, such as potential hydrocarbon reservoirs. However, a migration fulfilled with quality and accuracy may be a long time consuming process, due to the mathematical algorithm heuristics and the extensive amount of data inputs and outputs involved in this process, which may take days, weeks and even months of uninterrupted execution on the supercomputers, representing large computational and financial costs, that could derail the implementation of these methods. Aiming at performance improvement, this work conducted the core parallelization of a Reverse Time Migration (RTM) algorithm, using the parallel programming model Open Multi-Processing (OpenMP), due to the large computational effort required by this migration technique. Furthermore, analyzes such as speedup, efficiency were performed, and ultimately, the identification of the algorithmic scalability degree with respect to the technological advancement expected by future processors
Resumo:
Electro-hydraulic servo-systems are widely employed in industrial applications such as robotic manipulators, active suspensions, precision machine tools and aerospace systems. They provide many advantages over electric motors, including high force to weight ratio, fast response time and compact size. However, precise control of electro-hydraulic systems, due to their inherent nonlinear characteristics, cannot be easily obtained with conventional linear controllers. Most flow control valves can also exhibit some hard nonlinearities such as deadzone due to valve spool overlap on the passage´s orifice of the fluid. This work describes the development of a nonlinear controller based on the feedback linearization method and including a fuzzy compensation scheme for an electro-hydraulic actuated system with unknown dead-band. Numerical results are presented in order to demonstrate the control system performance