35 resultados para Sincronização fótica
Resumo:
One of the best established properties of the single late type evolved stars is that their rotational velocity and lithium content decrease with effective temperature and age. Nevertheless, the root cause of this property, as well as the link between rotation and lithium abundance and, in particular, the effects of binarity on rotation and lithium content in binary systems with evolved component, are not yet completely established. How does the gravitational tides, in binary systems, affects rotational evolution and lithium dilution? Trying to answer these questions, we have carried out an observational survey, in the lithium region centered at the lithium I line A6707.81A, for a large sample of about 100 binary systems with evolved component along the spectral range F, G and K, with the CES spectrometer mounted at the CAT 1.44 m Telescope of the ESO, La Silla, Chile. By combining the abundances of lithium issued from these observations with rotational velocity and orbital parameters, we have found a number of important results. First of all, we confirm that in this class of binary systems rotation is effectively affected by tidal effects. Binary systems with orbital period lower than about 100 days and circular or nearly circular orbits, present rotational velocity enhanced in relation to the single giant stars and to the binary systems with an orbital period larger than 100 days. This is clearly the result of the synchonization between the rotational and orbital motions due to tidal effects. In addition, we have found that lithium abundances in binary systems with giant components present the same gradual decreasing with effective temperature, observed in the single giants of same luminosity class and spectral types. We have found no lithium-rich binary systems, in contrast with single giants. A remarkable result from the present study is the one showing that synchronized binary systems with giant component retains more of their original lithium than the unsynchronized systems. In fact, we have found a possible "inhibited zone", in which synchronized binary systems with giant component having lithium abundance lower than a threshold level should be unusual. Finally, the present study also shows that the binary systems with giant component presenting the highest lithium contents are those with the highest rotation rates
Resumo:
Stroke is a neurological disorder caused by restriction of blood flow to the brain, which generates directly a deficit of functionality that affects the quality of life of patients. The aim of this study was to establish a short version of the Social Rhythm Scale (SRM), to assess the social rhythm of stroke patients. The sample consisted of 84 patients, of both sexes, with injury time exceeding 6 months. For seven days, patients recorded the time held 17 activities of SRM. Data analysis was performed using a principal components factor analysis with varimax rotation of the full version of SRM in order to determine which activities could compose brief versions of SRM. We then carried out a comparison of hits, the ALI (Level Activity Index) and SRM, between versions, by Kruskal-Walls and the Mann-Whitney test. The Spearman correlation test was used to evaluate the correlation between the score of the full version of SRM with short versions. It was found that the activities of SRM were distributed in three versions: the first and second with 6 activities and third with 3 activities. Regarding hits, it was found that they ranged from 4.9 to 5.8 on the first version; 2.3 to 3.8 in version 2 and 2.8 to 6.2 in version 3, the first the only version that did not show low values. The analysis of ALI, in version 1, the median was 29, in version 2 was 14 and in version 3 was 18. Significant difference in the values of ALI between versions 1 and 2, between 2 and 3 and between versions 1 and 3. The highest median was found in the first version, formed by activities: out of bed, first contact, drink coffee, watch TV in the evening and go to bed. The lowest median was observed in the second version and this was not what had fewer activities, but which had social activities. The medians of the SRM version 1 was 6, version 2 was 4 and version 3 was 6. Significant difference in the values of SRM between versions 1 and 2 and between 2 and 3, but no significant difference between versions 1 and 3. Through analysis, we found a significant correlation only between the full version and the version 1 (R2 = 0.61) (p <0.05), no correlation was found with version 2 (R2 = 0.007) nor with version 3 (R2 = 0.002), this was finally a factor to consider version 1 as the short brazilian version of the Social Rhythm Metric for stroke patients
Resumo:
Recently, genetically encoded optical indicators have emerged as noninvasive tools of high spatial and temporal resolution utilized to monitor the activity of individual neurons and specific neuronal populations. The increasing number of new optogenetic indicators, together with the absence of comparisons under identical conditions, has generated difficulty in choosing the most appropriate protein, depending on the experimental design. Therefore, the purpose of our study was to compare three recently developed reporter proteins: the calcium indicators GCaMP3 and R-GECO1, and the voltage indicator VSFP butterfly1.2. These probes were expressed in hippocampal neurons in culture, which were subjected to patchclamp recordings and optical imaging. The three groups (each one expressing a protein) exhibited similar values of membrane potential (in mV, GCaMP3: -56 ±8.0, R-GECO1: -57 ±2.5; VSFP: -60 ±3.9, p = 0.86); however, the group of neurons expressing VSFP showed a lower average of input resistance than the other groups (in Mohms, GCaMP3: 161 ±18.3; GECO1-R: 128 ±15.3; VSFP: 94 ±14.0, p = 0.02). Each neuron was submitted to current injections at different frequencies (10 Hz, 5 Hz, 3 Hz, 1.5 Hz, and 0.7 Hz) and their fluorescence responses were recorded in time. In our study, only 26.7% (4/15) of the neurons expressing VSFP showed detectable fluorescence signal in response to action potentials (APs). The average signal-to-noise ratio (SNR) obtained in response to five spikes (at 10 Hz) was small (1.3 ± 0.21), however the rapid kinetics of the VSFP allowed discrimination of APs as individual peaks, with detection of 53% of the evoked APs. Frequencies below 5 Hz and subthreshold signals were undetectable due to high noise. On the other hand, calcium indicators showed the greatest change in fluorescence following the same protocol (five APs at 10 Hz). Among the GCaMP3 expressing neurons, 80% (8/10) exhibited signal, with an average SNR value of 21 ±6.69 (soma), while for the R-GECO1 neurons, 50% (2/4) of the neurons had signal, with a mean SNR value of 52 ±19.7 (soma). For protocols at 10 Hz, 54% of the evoked APs were detected with GCaMP3 and 85% with R-GECO1. APs were detectable in all the analyzed frequencies and fluorescence signals were detected from subthreshold depolarizations as well. Because GCaMP3 is the most likely to yield fluorescence signal and with high SNR, some experiments were performed only with this probe. We demonstrate that GCaMP3 is effective in detecting synaptic inputs (involving Ca2+ influx), with high spatial and temporal resolution. Differences were also observed between the SNR values resulting from evoked APs, compared to spontaneous APs. In recordings of groups of cells, GCaMP3 showed clear discrimination between activated and silent cells, and reveals itself as a potential tool in studies of neuronal synchronization. Thus, our results indicate that the presently available calcium indicators allow detailed studies on neuronal communication, ranging from individual dendritic spines to the investigation of events of synchrony in neuronal networks genetically defined. In contrast, studies employing VSFPs represent a promising technology for monitoring neural activity and, although still to be improved, they may become more appropriate than calcium indicators, since neurons work on a time scale faster than events of calcium may foresee
Resumo:
Processing in the visual system starts in the retina. Its complex network of cells with different properties enables for parallel encoding and transmission of visual information to the lateral geniculate nucleus (LGN) and to the cortex. In the retina, it has been shown that responses are often accompanied by fast synchronous oscillations (30 - 90 Hz) in a stimulus-dependent manner. Studies in the frog, rabbit, cat and monkey, have shown strong oscillatory responses to large stimuli which probably encode global stimulus properties, such as size and continuity (Neuenschwander and Singer, 1996; Ishikane et al., 2005). Moreover, simultaneous recordings from different levels in the visual system have demonstrated that the oscillatory patterning of retinal ganglion cell responses are transmitted to the cortex via the LGN (Castelo-Branco et al., 1998). Overall these results suggest that feedforward synchronous oscillations contribute to visual encoding. In the present study on the LGN of the anesthetized cat, we further investigate the role of retinal oscillations in visual processing by applying complex stimuli, such as natural visual scenes, light spots of varying size and contrast, and flickering checkerboards. This is a necessary step for understanding encoding mechanisms in more naturalistic conditions, as currently most data on retinal oscillations have been limited to simple, flashed and stationary stimuli. Correlation analysis of spiking responses confirmed previous results showing that oscillatory responses in the retina (observed here from the LGN responses) largely depend on the size and stationarity of the stimulus. For natural scenes (gray-level and binary movies) oscillations appeared only for brief moments probably when receptive fields were dominated by large continuous, flat-contrast surfaces. Moreover, oscillatory responses to a circle stimulus could be broken with an annular mask indicating that synchronization arises from relatively local interactions among populations of activated cells in the retina. A surprising finding in this study was that retinal oscillations are highly dependent on halothane anesthesia levels. In the absence of halothane, oscillatory activity vanished independent of the characteristics of the stimuli. The same results were obtained for isoflurane, which has similar pharmacological properties. These new and unexpected findings question whether feedfoward oscillations in the early visual system are simply due to an imbalance between excitation and inhibition in the retinal networks generated by the halogenated anesthetics. Further studies in awake behaving animals are necessary to extend these conclusions
Resumo:
In this study, two circadian related centres, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) were evaluated in respect to their cytoarchitecture, retinal afferents and chemical content of major cells and axon terminals with a tract tracer and immunohistochemical techniques in the rock cavy (Kerodon rupestris), a Brazilian caviidae rodent species. The rock cavy SCN is innervated in its ventral portion by terminals from the predominantly contralateral retina. It also contains neurophisin and vasoactive intestinal polypeptide immunoreactive cell bodies and neuropeptide Y and enkephalin immunopositive fibres and terminals and is marked by intense GFAP immunoreactivity. The IGL receives a predominantly contralateral retinal projection, contains neuropeptide Y and nitric oxide synthase producing neurons and enkephalin immunopositive terminals and is characterized by dense GFAP immunoreactivity. This is the first report examining the neural circadian system in a crepuscular rodent species for which circadian properties have been described. The results are discussed comparing with what has been described for other species and in the context of the functional significance of these centres
Resumo:
The circadian system consists of multiple oscillators organized hierarchically, with the suprachiasmatic nucleus (SCN) as the master oscillator to mammalians. There are lots of evidences that each SCN cell is an oscillator and that entrainment depends upon coupling degree between them. Knowledge of the mechanism of coupling between the SCN cells is essential for understanding entrainment and expression of circadian rhythms, and thus promote the development of new treatments for circadian rhythmicity disorders, which may cause various diseases. Some authors suggest that the dissociation model of circadian rhythm activity of rats under T22, period near the limit of synchronization, is a good model to induce internal desynchronization, and in this way, enhance knowledge about the coupling mechanism. So, in order to evaluate the pattern of the motor activity circadian rhythm of marmosets, Callithrix jacchus, in light-dark cycles at the lower limit of entrainment, two experiments were conducted: 1) 6 adult females were submitted to the LD symmetric cycles T21, T22 and T21.5 for 60, 35 and 48 days, respectively; 2) 4 male and 4 female adults were subjected to T21 for 24 days followed by 18 days of LL, and then back to T21 for 24 days followed by 14 days of LL. Vocalizations of all animals and motor activity of each one of them were continuously recorded throughout the experiments, but the vocalizations were recorded only in Experiment 1. Under the Ts shorter than 24 h, two simultaneous circadian components appeared in motor activity, one with the same period of LD cycle, named light-entrained component, and the other in free-running, named non-light-entrained component. Both components were displayed for all the animals in T21, five animals (83.3%) in T21.5 and two animals (33.3%) in T22. For vocalizations both components were observed under the three Ts. Due to the different characteristics of these components we suggest that dissociation is result of partial synchronization to the LD cycle, wherein at least one group oscillator is synchronized to the LD by relative coordination and masking processes, while at least another group of oscillators is in free-running, but also under the influence of masking by the LD. As the T21 h was the only cycle able to promote the emergence of both circadian components in circadian rhythms of all Callithrix jacchus, this was then considered the lower entrainment limit of LD cycle promoter of dissociation in circadian rhythmicity of this species, and then suggested as a non-human primate model for forced desynchronization
Resumo:
Hebb postulated that memory could be stored thanks to the synchronous activity of many neurons, building a neural assembly. Knowing of the importance of the hippocampal structure to the formation of new explicit memories, we used electrophysiological recording of multiple neurons to access the relevance of rate coding from neural firing rates in comparison to the temporal coding of neural assemblies activity in the consolidation of an aversive memory in rats. Animals were trained at the discriminative avoidance task using a modified elevated plus-maze. During experimental sessions, slow wave sleep periods (SWS) were recorded. Our results show an increase in the identified neural assemblies activity during post-training SWS, but not for the neural firing rate. In summary, we demonstrate that for this particular task, the relevant information needed for a proper memory consolidation lies within the temporal patters of synchronized neural activity, not in its firing rate
Resumo:
Circadian rhythms are variations in physiological processes that help living beings to adapt to environmental cycles. These rhythms are generated and are synchronized to the dark light cycle through the suprachiasmatic nucleus. The integrity of circadian rhythmicity has great implication on human health. Currently it is known that disturbances in circadian rhythms are related to some problems of today such as obesity, propensity for certain types of cancer and mental disorders for example. The circadian rhythmicity can be studied through experiments with animal models and in humans directly. In this work we use computational models to gather experimental results from the literature and explain the results of our laboratory. Another focus of this study was to analyze data rhythms of activity and rest obtained experimentally. Here we made a review on the use of variables used to analyze these data and finally propose an update on how to calculate these variables. Our models were able to reproduce the main experimental results in the literature and provided explanations for the results of experiments performed in our laboratory. The new variables used to analyze the rhythm of activity and rest in humans were more efficient to describe the fragmentation and synchronization of this rhythm. Therefore, the work contributed improving existing tools for the study of circadian rhythms in mammals
Resumo:
The circadian timing system (CTS) is responsible for the generation and synchronization and the suprachiasmatic nucleus (SCN) of the hypothalamus has been described as the major circadian pacemaker in many mammalian species. The internal temporal organization managed by SCN is disturbed with aging bringing many pathological disorders that range from loss of complex cognitive performance to simple physiological functions. Therefore, our aim was perform a comparative study of the morphological aspects and neurochemical composition in the SCN of marmosets (Callithrix jacchus) adults and older using immunohistochemical techniques. We found morphometric and neurochemical changes in th SCN o folder animals in comparison to adults, among these a possible decreased in retinal projection to the SCN of older animals, found through a decline in CTB immunostaining, which can occur due atrophy and/or decreasing of fibers from the retinohypothalamic tract (RHT). The Klüver-Barrera histological technique strongly suggests a decrease in those fibers from RHT. Also, by means of a morphometric study, it is found a atrophy and numerical decline of neurons in SCN of aged animals, investigated by Nissl technique, and immunostaining with NeuN and calbindin. Relative optical density (ROD) analysis were used to evaluate the expression of some neurochemical components in SCN, such as GFAP expression, which was increased in older, result that indirectly reinforces that morphological changes occurs due the aging; the vasoactive intestinal polipeptide (VIP) showed no expression alteration in SCN of older animals; the serotonin (5-HT) was descreased in the dorsomedial portion of the SCN, and neurpeptide Y (NPY) apparently also decrease due to the increase of age. Many of these modifications were seen in other animals, such as rodents, human primates and non-human primates. These data about marmoset comes to add new information of the effect of aging on structures responsibles for the circadian rhytmicity, and that some behavioral changes controlled by th SCN, and founded in aged animals, may be caused by these morphological and neurochemical changes. Although some results have been quantitatively negative, qualitatively all analysis show significant change comparing adult and older animals, perhaps due to a low sampling number. In conclusion, the marmoset presents several morphological and neurochemical changes in the SCN of aged animals compared to adults, which may result in behavioral changes that favor pathology aging related
Resumo:
Kerodon rupestris (rock cavy, mocó) is an endemic caviidae of Brazilian northeast that inhabits rocky places in the semi arid region. The aim of this study was to characterize the activity/rest rhythm of the rock cavy under 12:12 h LD cycle and continuous light. In the first stage, seven animals were submitted to two light intensities (LD; 250:0 lux and 400:0 lux; 40 days each intensity). In the second stage four males were kept for 40 days in LD (470:<1 lux), for 18 days in LL 470 lux (LL470) and for 23 days in red dim light below 1 lux (LL<1). In the third stage three males were initially kept in LD 12:12 h (450:<1 lux) and after that in LL with gradual increase in light intensity each 21 days (<1 lux LL<1; 10 lux-LL10; 160 lux LL160; 450 lux LL450). In the fourth stage it was analyzed the motor activity of 16 animals in the first 10 days in LD. Motor activity was continuously recorded by passive infrared movement sensors connected to a computer and totaled in 5 min bins. The activity showed circadian and ultradian rhythms and activity peaks at phase transitions. The activity and the rest occurred in the light as well as in the dark phase, with activity mean greater in the light phase for most of the animals. The light intensity influenced the activity/rest rhythm in the first three stages and in the first stage the activity in 400 lux increased in four animals and decreases in two. In the second stage, the tau for 3 animals in LL470 was greater than 24 h; in LL<1 it was greater than 24 h for one and lower for two. In the third stage the tau decreased with the light intensity increase for animal 8. During the first days in the experimental room, the animals did not synchronize to the LD cycle with activity and rest occurring in both phases. The results indicate that the activity/rest rhythm of Kerodon rupestris can be affected by light intensity and that the synchronization to the LD cycle results from entrainment as well as masking probably as a consequence of the action of two or more oscillators with low coupling strength
Resumo:
The principal zeitgeber for most of species is the light-dark photocycle (LD), though other environment factors as food availability, temperature and social cues may act. Daily adjustment of the circadian pacemaker may result from integration of environmental photic and non-photic cues with homeostatic cues. Characterization of non-photic effects on circadian timing system in diurnal mammals is scarce in relation to nocturnal, especially for ecologically significant cues. Thus, we analyzed the effect of conspecific vocalizations and darkness on circadian activity rhythm (CAR) in the diurnal primate Callithirx jacchus. With this objective 7 male adults were isolated in a room with controlled illumination, temperature (26,8 ± 0,2°C) and humidity (81,6 ± 3,6%), and partial acoustic isolation. Initially they were under LD 12:12 (~300:2 lux), and subsequently under constant illumination (~2 lux). Two pulses of conspecific vocalizations were applied in total darkness, separated by 22 days, at 7:30 h (external time) during 1 h. They induced phase delays at circadian times (CTs) 1 and 10 and predominantly phase advances at CTs 9 and 15. After that, two dark pulses were applied, separated by 14 days, during 1 h at 7:30 h (external time). These pulses induced phase delays at CTs 2, 3 and 18, predominantly phase advances at CTs 8, 10 and 19, and no change at CT 14. However, marmosets CAR showed oscillations in endogenous period and active phase duration influenced by vocalizations from animals outside the experimental room, which interfered on the phase responses to pulses. Furthermore, social masking and relative coordination with colony were observed. Therefore, phase responses obtained in this work cannot be attributed only to pulses. Afterwards, pulses of conspecific vocalizations were applied in total darkness at 19:00 h (external time), during 1 h for 5 consecutive days, and after 21 days, for 30 consecutive days, on attempt to synchronize the CAR. No animal was synchronized by these daily pulses, although oscillations in endogenous period were observed for all. This result may be due to habituation. Other possibility is the absence of social significance of the vocalizations for the animals due to random reproduction, since each vocalization has a function that could be lost by a mixture of sounds. In conclusion, conspecific vocalizations induce social masking and relative coordination in marmosets CAR, acting as weak zeitgeber
Resumo:
The sleep onset and offset delay at adolescence in relation to childhood. Besides biological causes, some external factors as academic obligations and socialization contributes, increasing the burden of school and socialization. However, morning school schedules reduce sleep duration. Besides light strong effect, studies in humans have indicated that exercise influence circadian synchronization. To evaluate the effect of the morning exercise under sunlight on sleep-wake cycle (SWC) of adolescents, 160 high school students (11th year) were exposed to the following conditions: lesson in usual classroom (Group C), lesson in swimming pool exposed to sunlight (Group E), half of them carrying through physical activity (EE) and the other resting (EL). Each experimental group met two stages: assessment of SWC 1 week before and 1 week during the intervention, which was held in Monday and Wednesday between 7:45 and 8:30 am. In the baseline, there were applied the questionnaires "Health and Sleep" and cronotype evaluation (H & O). In addition, students were evaluated before and during the intervention by "Sleep Diary", "Karolinska Sleepiness Scale" (KSS), Psychomotor Vigilance Test (PVT) and actimetry. During the intervention, there was a delay in wake-up time on the weekend and a trend to greater sleep duration on week for the three groups. At the weekend, only the groups EE and EL increased sleep duration. There was no difference in bedtime, irregularity of sleep schedules and nap variables. The sleepiness showed a circadian pattern characterized by higher alertness levels at 11:30 am and sleepiness levels at bedtime and wake-up time on week. On weekends there were higher levels of alertness in these times. In the days of intervention, there was an increase of sleepiness at 11:30 am for groups EL and EE, which may have been caused by a relaxing effect of contact with the water of the pool. In addition, the group EE showed higher alert levels at 14:30 pm on Monday and at 8:30 am in the Wednesday, possibly caused by exercise arousal effect. The reaction time assessed through the TPV did not vary between the stages. The sleep quality improved in the three groups in the second stage, making impossible the evaluation of intervention effect. However, the sleep quality increased on Monday and Tuesday only on the group EE. From the results, it is suggested that the intervention promoted effects on the sleepiness at some day hours. In other SWC variables there were no effects, possibly due to a large SWC irregularity on weekends. Thus, the evaluation of higher weekly frequency EF is necessary, since only two days were insufficient to promote greater effect on adolescents SWC
Resumo:
The Zona Incerta (ZI) is embryologically derived from the ventral thalamus, in continuity with the reticular nucleus of the thalamus. Studies usingneural tracers technics have allowed identify a complex connectional map including the ZI. Futhermore, cytochemical, molecular and functional data have shown abundant variability in the neurochemical contend in the ZI, as well as,the involvement of the ZI in the modulation of nociception, attention, alertness, control and maintenance of posture and control of visceral activity. This work aims to characterize the cytoarchitecture, neurochemical content of the ZI in the rock cavy (Kerodon rupestris), and a direct retinal-ZI pathway present in this species. The Nissl staining is effective for the delineation and characterization of ZI citoarchitecture. ZIc receives a contralateral retinal projection showing varicosities, suggesting a modulatory character of photic information. The ZI in the rock cavy, as in others rodents and primates, is characterized by a complex neurochemical signature. The ZI neurochemistry presents great diversity, especially in the medial portion of ZIr, where we have found immunoreactivity of all neuroactive substances investigated, and that NOS-IR, GFAP and CR helped the delimitation of middle ZI in ZId and ZIv. Nevertheless, just 5-HT-IR fibers are present in all subdivisions of the ZI. These data demonstrate the great wealth of the neurochemistry of rock cavy s ZI and a direct retinal modulation in the ZI, helping to explain it s broad functional repertory
Resumo:
This dissertation aims at extending the JCircus tool, a translator of formal specifications into code that receives a Circus specification as input, and translates the specification into Java code. Circus is a formal language whose syntax is based on Z s and CSP s syntax. JCircus generated code uses JCSP, which is a Java API that implements CSP primitives. As JCSP does not implement all CSP s primitives, the translation strategy from Circus to Java is not trivial. Some CSP primitives, like parallelism, external choice, communication and multi-synchronization are partially implemented. As an aditional scope, this dissertation will also develop a tool for testing JCSP programs, called JCSPUnit, which will also be included in JCircus new version. The extended version of JCircus will be called JCircus 2.0.
Resumo:
The objective of this work was about fixing the free will paradigm as negative evaluation of political rights which presents a new classification dde such rights, producing species: a) conditions of eligibility autonomous (free will), b) eligibility requirements heteronomous (will third party) and c) ineligibility (court decisions / administrative). This morality and life history as a condition of eligibility unattended, making a hermeneutic analysis of art. 14, § 9 of the Constitution, considering the justification of the views of the voting Minister Carlos Ayres Brito Appeal in Ordinary No 1069/2006 of the Supreme Electoral Tribunal (where Eurico Miranda). Are fixed concepts of morality and life history from the perspective of the moral act freely and consciously. Has resulted in the identification of the moral virtues of honesty and integrity, which are voluntary acts as a reference to morality and integrity respectively. Justifies the morality and life history as a condition of eligibility unattended. who depend exclusively on the willingness of the candidate. It is noteworthy that the conditions for eligibility as a factual finding does not violate the law and does not allow punitive sanctions or setting a deadline in case of refusal to register the application. Attributed to political parties to take responsibility in their statutes moral criteria for the nomination convention in pre candidates, giving an ethical dimension. Analyzes the law under the Clean Record of morality and life history of the candidate and the possible impact on the electoral context