95 resultados para Ruptura o bifurcación


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mining industry is responsible for the generation of waste from their natural process of extraction. The mining impacts in urban areas are of special importance due to the high urban occupation, which are exacerbated due to the proximity of the mined areas and populated areas. Some solutions to wastedisposal have the potential to significantly reduce the environmental risks and liabilities, but represent higher costs in the stages of deployment and operation. The addition of mining waste as raw material in the development of commercial products reduces the environmental impacts, transforming the waste into a positive element in the generation of employment and income. This thesis studies the incorporation of waste iron ore in two clays, one from the ceramic industry of the City of Natal and the other from the ceramic industry of the Seridó Region, both in the State of Rio Grande do Norte, Brazil. Percentages of iron ore waste of 5%, 10% , 15%, 20%, 25% and 30% were used in the tested ceramic matrix. The two clays and the iron ore waste used as part of this investigation were characterized by X-ray diffraction tests, X-ray fluorescence tests, differential thermal analysis, thermogravimetric analysis and dilatometric analysis. The samples were sintered under temperatures of 850 °C, 950 °C and 1050°C at a heating rate of 5 °C/min with isotherms of two hours. The following tests were performed with the samples: linear shrinkage, water absorption, apparent porosity, apparent density, mass loss in fire and bending resistance in order to obtain their physical and mechanical properties. An amount of 5% of waste iron ore in the matrix clay at a temperature of 850 0C resulted in na increase of about 65% in the tensile strength of the clay samples from the Natal ceramic industry. A linear shrinkage of only 0.12% was observed for the samples, which indicates that the physical properties of the final product were not influenced by the addition of the waste

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study aimed at the treatment of attapulgite for the development and characterization of composite recycled low density polyethylene - PEBD_rec embedded with natural attapulgite - ATP_NAT, sifted - ATP_PN and attapulgite treated with sulfuric acid - ATP_TR in different compositions (1, 3 and 5%) and compared with the PEBD_rec. The atapulgitas, natural, screened and treated, were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and determining the area specific surface (BET). The composites were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), Xray diffraction (XRD), torque rheometry, scanning electron microscopy (SEM) and traction. The composite PEBD_rec / ATP (natural, sieved and treated) were produced by mixing in the molten state in a single screw extruder matrix wire with subsequent reprocessing matrix tape. It was found that the screening of attapulgite not reduce the quantity of quartz and the acid treatment completely extracted dolomite aggregate impurities of the channels attapulgite, and increase their surface area. The addition of attapulgite in PEBD_rec acts as a catalyst, reducing the thermal stability of the polymer. The increased concentration of attapulgite, increases resistance and reduces the elongation at break and modulus of elasticity of the composite PEBD_rec / attapulgite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O processamento térmico de materiais cerâmicos via energia de microondas, no estágio atual, vem ganhando cada dia mais importância, tendo em vista suas inúmeras aplicações, como por exemplo: aplicação de microondas na área de processamento mineral (aquecimento de minérios antes da moagem, secagem, redução carbotérmica de óxidos minerais, lixiviação, fusão, pré-tratamento de minérios e concentrados de ouro refratário, regeneração de carvão, etc. de acordo com Kigman & Rowson, 1998). Em virtude de uma série de vantagens em potencial, frente aos métodos convencionais de aquecimento, como redução no tempo de processamento; economia de energia; diminuição do diâmetro médio das partículas e melhoramento nas propriedades tecnológicas em geral, esta tecnologia vem se destacando. Neste contexto, o objetivo geral deste trabalho, é desenvolver uma pesquisa visando identificar e caracterizar novas opções de matérias-primas cerâmicas como argilas, feldspatos e caulins que sejam eficazes para definir a formulação de uma ou mais massas para produção de componentes de cerâmica estrutural com propriedades físicas, mecânicas e estéticas adequadas após passarem por sinterização convencional e por energia de microondas destacando as vantagens desta última. Além dos requisitos técnicos e de processo, as formulações apresentadas deverão atender às expectativas de preço e de logística de fornecimento. No estudo foram conformados corpos-de-prova por extrusão e prensagem, sinterizados em fornos microondas e convencional, sob ciclos de queima mais rápidos que os atualmente praticados. As matérias-primas foram caracterizadas e analisadas, utilizando as técnicas de fluorescência por raios X (FRX), difração por raios X (DRX), análise térmica diferencial (DTA), análise térmica gravimétrica (DTG), análise granulométrica (AG), microscopia eletrônica de varredura (MEV), absorção d agua (AA), massa especifica aparente (MEA), porosidade aparente (PA), retração linear (RL) e tensão de ruptura e flexão (TRF). Os resultados obtidos indicaram que as propriedades tecnológicas de Absorção de água (AA) e Tensão de Ruptura e flexão (TRF), proposto no trabalho foram adquiridos com sucesso e estão bem além do limite exigido pelas especificações das normas da ABNT NBR 15.270/05 e 15.310/09

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work studied the immiscible blend of elastomeric poly(methyl methacrylate) (PMMA) with poly(ethylene terephthalate) (PET) bottle grade with and without the use of compatibilizer agent, poly(methyl methacrylate-co-glycidyl methacrylate - co-ethyl acrylate) (MGE). The characterizations of torque rheometry, melt flow index measurement (MFI), measuring the density and the degree of cristallinity by pycnometry, tensile testing, method of work essential fracture (EWF), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed in pure polymer and blends PMMA/PET. The rheological results showed evidence of signs of chemical reaction between the epoxy group MGE with the end groups of the PET chains and also to the elastomeric phase of PMMA. The increase in the concentration of PET reduced torque and adding MGE increased the torque of the blend of PMMA/PET. The results of the MFI also show that elastomeric PMMA showed lower flow and thus higher viscosity than PET. In the results of picnometry observed that increasing the percentage of PET resulted in an increase in density and degree crystallinity of the blends PMMA/PET. The tensile test showed that increasing the percentage of PET resulted in an increase in ultimate strength and elastic modulus and decrease in elongation at break. However, in the phase inversion, where the blend showed evidence of a co-continuous morphology and also, with 30% PET dispersed phase and compatibilized with 5% MGE, there were significant results elongation at break compared to elastomeric PMMA. The applicability of the method of essential work of fracture was shown to be possible for most formulations. And it was observed that with increasing elastomeric PMMA in the formulations of the blends there was an improvement in specific amounts of essential work of fracture (We) and a decrease in the values of specific non-essential work of fracture (βWp)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extractivism mineral is considered an activity highly degrading, due to the large volume of material that he moves in the form of ore and residues. The vast majority of mining companies do not show any technology or economically viable application that will allow the recycling of mineral residue, these being launched in areas receiving located the "open skies" degrade the environment. In Rio Grande do Norte to the production of ceramic red restricts their activities to the production of products such as: solid bricks, ceramic blocks, tiles, among others. Seeking to unite experiences and technical information that favor sustainable development, with important benefits to the construction sector and civil society in general, the present work studies the incorporation of the residue of scheelite in ceramic matrix kaolinitic, coming from the municipality of Boa Saúde - RN, in percentage of 5 %, 10 %, 20 %, 30% 40% and 50 %, by evaluating its microstructure, physical properties and formulation. The raw materials were characterized through the trials of X ray fluorescence, Diffraction of X rays, Differential Thermal Analysis and Termogravimetric Analysis. The samples were formed and fired at temperatures of 850o, 900o, 1000o, 1050o, 1100o, 1150o and 1200 oC, with isotherm of 1 hour and heating rate of 10 oC/min. Assays were performed technological of loss to fire, Water Absorption, Apparent Porosity, Apparent Density, Mass Loss in Fire and Bending Resistance; in addition to the Scanning Electron Microscopy, analyzing their physical and mechanical properties. The use of residue of scheelite in ceramic mass kaolinitic provided a final product with technological properties that meet the technical standards for the production of bricks and roofing tiles, with the percentage of 20% of waste that showed the best results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The industrial production of ornamental rocks and the burning of coffee husk generate waste that is discarded into the environment. However, with the study of the incorporation of these residues in ceramic products, may be found an alternative to reducing environmental impacts and detrimental effects on human health caused by its indiscriminate disposal of waste in nature. Thus, this work aimed to study the addition of ashes of the coffee husk and granite residue in matrix of red ceramic. The raw materials were dry milled and sieved to mesh 100. To characterize the raw materials were carried out analyzes of X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis (PSA), differential thermal analysis (DTA) and thermogravimetric analysis (TG). Six formulations were prepared where the clay content was kept constant (70%wt) and ashes contents and granite residue varied from 10, 15, 20 and 30%. Dilatometrics analyzes were performed at four selected formulations, containing them: 100% clay (A100); 70% clay and 30% ashes (A70C30); 70% clay and 30% granite residue (A70G30); and 70% clay, 15% granite residue and 15% ashes (A70G15C15). The samples were prepared by uniaxial compaction with pressure of 25 MPa, and fired at temperatures of 800°C, 850ºC, 900ºC, 950ºC, 1000ºC and 1100°C. Assays were performed to determine the linear shrinkage of burning (LSB), water absorption (WA), apparent porosity (AP), density (D) and tensile bending. Also were performed analyzes of X-ray diffraction (XRD) and scanning electron microscopy (SEM) of the samples fired. The formulations incorporating granite residue and/or ashes reached the required limits of water absorption according to NBR 15270-1 and NBR 15310 and tensile bending according to classical literature (SANTOS, 1989) necessary for the production of tiles and ceramic block for masonry sealing

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The production of waste from urban and industrial activities is one of the factors of environmental contamination and has aroused attention of the scientific community, in the sense of its reuse. On the other hand, the city of Salvador/Ba, with approximately 262 channels, responsible for storm water runoff, produces every year, by the intervention of cleaning and clearing channels, a significant volume of sediments (dredged mud), and thus an appropriate methodology for their final destination. This study aims to assess the influence of incorporation of these tailings in arrays of clay for production of interlocked block ceramic, also known as ceramic paver. All the raw materials from the metropolitan region of Salvador (RMS) were characterized by x-ray fluorescence, x-ray diffraction, thermal analysis (TG and TDA), particle size analysis and dilatometry. With the use of statistical experimental planning technique, ternary diagram was defined in the study region and the analyzed formulations. The specimens were prepared with dimensions of 60x20x5mm³, by uniaxial pressing of 30 MPa and after sintering at temperatures of 900°, 1000º and 1100ºC the technological properties were evaluated: linear shrinkage, water absorption, apparent porosity, apparent specifies mass, flexural rupture and module. For the uniaxial compression strength used cylindrical probe body with Ø 50 mm. The standard mass (MP) was prepared with 90% by weight of clay and 10% by weight of Channel sediment (SCP), not being verified significant variations in the properties of the final product. With the incorporation of 10% by weight of manganese residue (PFM) and 10% by weight of the Ceramic waste (RCB) in the mass default, in addition to adjusting the plasticity due to less waste clay content, provided increased linear firing shrinkage, due the significant concentration of K2O, forming liquid phase at low temperature, contributing to decreased porosity and mechanical resistance, being 92,5 MPa maximum compressive strength verified. After extract test leachate and soluble, the piece containing 10% of the PFM, was classified as non-hazardous and inert material according to NBR10004/04 ABNT. The results showed the feasibility on using waste, SCP, RCB and PFM clay mass, at temperatures above 900ºC, paver ceramic production, according to the specifications of the technical standards, so that to exceed the 10% of the PFM, it becomes imperative to conduct studies of environmental impacts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of new materials to fill the demand of technological advances is a challenge for many researchers around the world. Strategies such as making blends and composites are promising alternatives to produce materials with different properties from those found in conventional polymers. The objective of this study is to evaluate the effect of adding the copolymer poly(ethylene methyl acrylate) (EMA) and cotton linter fibers (LB) on the properties of recycled poly(ethylene terephthalate) (PETrec) by the development of PETrec/EMA blend and PETrec/EMA/LB blend composite. In order to improve the properties of these materials were added as compatibilizers: Ethylene - methyl acrylate - glycidyl methacrylate terpolymer (EMA-GMA) and maleic anhydride grafted polyethylene (PE-g-MA). The samples were produced using a single screw extruder and then injection molded. The obtained materials were characterized by thermogravimetry (TG), melt flow index (MFI) mensurements, torque rheometry, pycnometry to determinate the density, tensile testing and scanning electron microscopy (SEM). The rheological results showed that the addition of the EMA copolymer increased the viscosity of the blend and LB reduces the viscosity of the blend composite. SEM analysis of the binary blend showed poor interfacial adhesion between the PETrec matrix and the EMA dispersed phase, as well as the blend composite of PETrec/EMA/LB also observed low adhesion with the LB fiber. The tensile tests showed that the increase of EMA percentage decreased the tensile strength and the Young s modulus, also lower EMA percentage samples had increased the elongation at break. The blend composite showed an increase in the tensile strength and in the Young`s modulus, and a decrease in the elongation at break. The blend formulations with lower EMA percentages showed better mechanical properties that agree with the particle size analysis which showed that these formulations presented a smaller diameter of the dispersed phase. The blend composite mechanical tests showed that this material is stronger and stiffer than the blend PETrec/EMA, whose properties have been reduced due to the presence of EMA rubbery phase. The use of EMA-GMA was effective in reducing the particle size of the EMA dispersed phase in the PETrec/EMA blend and PE-g-MA showed evidences of reaction with LB and physical mixture with the EMA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of gypsum, one of the oldest building materials for the construction industry in the country has been experiencing a significant and steady growth, due to its low cost and some of its properties that confer comparative advantage over other binder materials. Its use comprises various applications including the coating of walls and the production of internal seals and linings. Moreover, the fibers are being increasingly incorporated into arrays fragile in an attempt to improve the properties of the composite by reducing the number of cracks, the opening of the same and its propagation velocity. Other properties, depending on the function of the component material or construction, among these thermal and acoustic performances, are of great importance in the context of buildings and could be improved, that is, having better performance with this embodiment. Conduct a comparative study of physico-mechanical, thermal and acoustic composite gypsum incorporating dry coconut fiber, in the form of blanket, constituted the main objective of this work. Improving the thermal and acoustic performances of precast gypsum, used for lining and internal vertical fences of buildings, was the purpose of development of these composites. To evaluate the effect of fiber content on the properties of the composites were used to manufacture the composite layer with different thicknesses. The composites were fabricated in the form of plates with dimensions of 500x500x24mm. To facilitate the comparative study of the properties were also made with material gypsum boards only. We then determined the physico-mechanical, thermal and acoustical plaster and composites. The results indicated that the composites were significant gains in relation to thermal performance and also acoustic, in certain frequency range, increasing the thickness of the blanket. Concerning other physical-mechanical properties, the results showed that although the compressive strength was lower than for the composite did not occur after a fracture catastrophic failure. The same trend was observed with regard to resistance to bending, since the composites have not suffered sudden rupture and still continued after the load supporting point of maximum load

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-Ceramic (M/C) Zirconia-stainless steel interfaces have been processed through brazing techniques due to the excellent combination of properties such as high temperature stability, high corrosion resistance and good mechanical properties. However, some M/C interfaces show some defects, like porosity and cracks results in the degradation of the interfaces, leading even to its total rupture. Most of time, those defects are associated with an improper brazing parameters selection to the M/C system. In this work, ZrO2 Y-TZP and ZrO2 Mg - PSZ were joint with the stainless steel grade 304 by brazing using a eutectic silver-copper (Ag28Cu) interlayer alloy with different thermal cycles. Ceramic surfaces were previous mechanically metallized with titanium to improve adhesion of the system. The effect of temperature on the M/C interface was studied. SEM-EDS and 3 point flexural bend test were performed to evaluate morphology, chemical composition and mechanical resistance of the M/C interfaces. Lower thermal cycle temperatures produced better results of mechanical resistance, and more regular/ homogeneous reaction layers between braze alloy and metal-ceramic surfaces. Also was proved the AgCu braze alloy activation in situ by titanium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the industries, those that produce ceramic porcelain for use in construction industry and oil, during the exploration and production period, play an important role in the production of waste. Much research has been carried out both by academia and the productive sector, sometimes reintroducing them in the same production line that generated them, sometimes in areas unrelated to their generation, as in the production of concrete and mortar for the construction, for example, but each one in an isolated way. In this research, the aim is to study the combined incorporation of the waste drill cuttings of oil well and the residue of the polishing of porcelain, generated in the final stage of finishing of this product in a clay matrix, for the production of red pottery, specifically bricks, ceramic blocks and tiles. The clay comes from the municipality of São Gonçalo, RN, the drilling waste is from the Natal basin, in Rio Grande do Norte, and the residue of the polishing proceeds from a ceramic porcelain of the State of Paraíba. For this purpose, we used a mixture of a plastic clay with a non-plastic, in a ratio of 50% each, settling formulations with the addition of these two residues in this clay matrix. In the formulations, both residues were incorporated with a minimum percentage of 2.5% and maximum of 12.5%, varying from 2.5% each, in each formulation, which the sum of the waste be no more than 15%. It should be noted that the residue of the polishing of ceramic porcelain is a IIa class (not inert). The materials were characterized by XRF, XRD, TG, DTA, laser granulometry and the plasticity index. The technological properties of water absorption, apparent porosity, linear shrinkage of burning, flexural tensile strength and bulk density were evaluated after the sintering of the pieces to 850 °C, 950 °C and 1050 °C, with a burning time of 3 hr, 3 hr and 30 minutes, and 3 hr and 50 minutes, respectively, with a heating rate of 10 °C/minute, for all formulations and landing of 30 minutes. To better understand the influence of each residue and temperature on the evaluated properties, we used the factorial planning and its surfaces of response for the interpretation of the results. It was found that the temperature has no statistical significance at a 95% of reliability level in flexural tensile strength and that it decreases the water absorption and the porosity, but increases the shrinkage and the bulk density. The results showed the feasibility of the desired incorporation, but adjusting the temperature to each product and formulation, and that the temperatures of 850 °C and 950 °C were the one that responded to the largest number of formulations

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The state of Rio Grande do Norte presents a great potentiality for the production of ceramic tiles because of having natural raw material in quantity and quality making its economical exploration possible, beyond the great energetic differential of the state, the natural gás. This works aims to study the influence of the dolomite and granulometry concentration and calcinations temperature in the obtaining of formulations for porous coverings which have to be coherent to the project,s specifications. The experiments have involved the physical-chemical and mineralogical characterizations of raw materials and mechanical tests in the dry and burnt proof bodies preceding a mixture experiment planning with the use of the response surface methodology, in order to get the best raw materials combinations to produce a ceramic mass with specific properties. The twelve ceramic masses studied in this work were prepared by the via dry process, characterized, shaped by uniaxial pressing and sinterized in the temperatures of 940ºC, 1000ºC, 1060ºC, 1120ºC and 1180ºC, using a fast burning cycle. The crystalline phases formed during the sintering in the temperatures in study have revealed the presence of anorthite and diopside beyond quartz with a remaining phase. These phases were the main responsible ones by the physical- mechanical properties of the sinterized proof bodies. The proof bodies after the sintering stage have presented water absorption higher than 10% and a good dimensional stability in all studied temperatures. However, the flexural breaking strength results in the temperatures of 940ºC, 1000ºC and 1060ºC, under the temperature zone of the vitrification of ceramic whiteware do not reach the flexural breaking strength specific for the porous wall tile (15 MPa), but in the temperature of 1120ºC next to the vitrification temperature zone, some whiteware ceramic (formulations) has reached the specified value for the porous wall tile. The results of this work have showed that the studied raw materials have great importance for used in the production of porous wall tiles (BIII)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, industries from all sectors have great concerns over the disposition of the residues generated along the productive process. This is not different in the mineral sector, as this generates great volumes of residues. It was verified that the kaolin improvement industry generates great volumes of residue basically constituted of kaolinite, muscovite mica and quartz, which are basic constitution elements to formularisations of ceramics masses to the production of covering of stoneware tiles type. This happens because the methodology applied to the improvement process is still very rudimentary, what causes a very low yield, only ¼ from all the material volume that enters the improvement process, in the end, is marketable. The disposal of this residue, in a general way, causes a very big negative environmental impact, what has justified the researches efforts aiming to find a rational solution to this problem. In this way, the intention of this present work is the utilization of this residue in the manufacture of products to high quality ceramics covering, stoneware tiles in an industrial scale. For this purpose, the influence of the addition of the residue to a standard ceramics mass used by a ceramics sector company, already established in the market, with the intention of verifying the possibility of use of this residue as the mass complementary raw material and even the possible partial or total substitution of one of the components of the mass for the raw material in evidence will be studied. To the accomplishment of this work, the kaolin improvement residue generated by an industry of exploitation and improvement of kaolin, located in the region of Equador-RN, in the levels 1,2,4,8, 16 and 32% will be added to the standard mass already used for the production of stoneware tiles. The raw materials used, kaolin residue and the standard mass, were characterized through DRX, FRX, DTA, TGA and dilatometry. After the sintering of the bodies of test, tests of water absorption, apparent porosity, post burning linear retraction, apparent specific mass and flexural strength (3 point bending) were realized to determinate the technological properties of these materials. The results show the studied residue can be considered raw material of great potential to the industry of floor and ceramics covering of the stoneware tiles type

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Produced water is the main effluent linked to the activity of extraction of oil and their caring management is necessary due to the large volume involved, to ensure to minimize the negative impacts of discharges of these waters in the environment. This study aimed to analyze the use of retorted shale, which is a reject from the pyrolysis of pirobituminous shale, as adsorbent for the removal of phenols in produced water. The material was characterized by different techniques (grain sized analysis, thermal analysis, BET, FRX, FT-IR, XRD and SEM), showing the heterogeneity in their composition, showing its potential for the removal of varied compounds, as well as the phenols and their derivatives. For the analysis of the efficiency of the oil shale for the adsorption process, assays of adsorption balance were carried through, and also kinetic studies and dynamics adsorption, in the ETE of the UTPF of Petrobras, in Guamaré-RN. The balance assays shown a bigger conformity with the model of Langmuir and the kinetic model more adjusted to describe the adsorption of phenols in retorted shale was of pseudo-second order. The retorted shale presented a low capacity of adsorption of phenols (1,3mg/g), when related to others conventional adsorbents, however it is enough to the removal of these composites in concentrations presented in the produced water of the UTPF of Guamaré. The assays of dynamics adsorption in field had shown that the concentration of phenol in the effluent was null until reaching its rupture (58 hours). The results showed the possibility of use of the reject for removal of phenols in the final operations of the treatment process, removing as well, satisfactorily, the color and turbidity of the produced water, with more than 90% of removal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The acceleration of industrial growth in recent decades on all continents aroused the interest of the companies to counter the impacts produced on the environment, spurred primarily by major disasters in the petroleum industry. In this context, the water produced is responsible for the largest volume of effluent from the production and extraction of oil and natural gas. This effluent has in its composition some critical components such as inorganic salts, heavy metals (Fe, Cu, Zn, Pb, Cd, ), presence of oil and chemicals added in the various production processes. In response to impact, have been triggered by research alternative adsorbent materials for water treatment and water produced, in order to removing oils and acids and heavy metals. Many surveys of diatomaceous earth (diatomite) in Brazil involve studies on the physico-chemical, mineral deposits, extraction, processing and applications. The official estimated Jazi are around 2.5 million tonnes, the main located in the states of Bahia (44%) and Rio Grande do Norte (37,4%). Moreover, these two states appear as large offshore producers, earning a prominent role in research of adsorbents such as diatomite for treatment of water produced. Its main applications are as an agent of filtration, adsorption of oils and greases, industrial load and thermal insulator. The objective of this work was the processing and characterization of diatomite diatomaceous earth obtained from the municipality of Macaíba-RN (known locally as tabatinga) as a low cost regenerative adsorbent for removal of heavy metals in the application of water produced treatment. In this work we adopted a methodology for batch processing, practiced by small businesses located in producing regions of Brazil. The characterization was made by X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area (BET). Research conducted showed that the improvement process used was effective for small volume production of diatomite concentrated. The diatomite obtained was treated by calcination at temperature of 900 oC for 2 hours, with and without fluxing Na2CO3 (4%), according to optimal results in the literature. Column adsorption experiments were conducted to percolation of the in nature, calcined and calcined fluxing diatomites. Effluent was used as a saline solution containing ions of Cu, Zn, Na, Ca and Mg simulating the composition of produced waters in the state of Rio Grande do Norte, Brazil. The breakthrough curves for simultaneous removal of copper ions and zinc as a result, 84.3% for calcined diatomite and diatomite with 97.3 % for fluxing. The calcined fluxing diatomite was more efficient permeability through the bed and removal of copper and zinc ions. The fresh diatomite had trouble with the permeability through the bed under the conditions tested, compared with the other obtained diatomite. The results are presented as promising for application in the petroleum industry