51 resultados para Rigidez
Resumo:
This thesis entitled SINAES: the different faces of the evaluation at UFRN, aims to analyze the configuration that the national policy for assessment in higher education has taken on UFRN. We assume that in recent years there are an oscillation between the concepts of evaluation, according with the logic of public administration it has preferred an approach that presents itself as a promoter of quality, sometimes with regulatory aspects, sometimes with educational ones. The text discusses the use of the new assessment tools for higher education placing them under the new demands on state reform context in which this is to promote and measure quality based on the values of excellence and competitiveness. This movement arises from the redefinition of the role of the State that has been taking features of Evaluator State. From a historical review of government initiatives in the field of evaluation, we analyze the characteristics of assessment policies outlined over the past decades. We are based on the theoretical method that aims to examine the multiple determinants that shape a particular reality from the larger movement of totality. To identify, in this case, connections and ruptures that have emerged over the history of assessment policies aimed at higher education by checking their determinants in order to better explain the reality. To investigate the object of this study we used as instruments: the research literature and research documents, the semi-structured interviews and non-participant observation. The study revealed that there are different practices of evaluation and that before to establishment the SINAES program, the UFRN already had a culture of an institutional assessment, more participatory and democratic, opposing to the rigidity of the self-assessment in SINAES program that it was instituted by the Commission for assessment (CPA). We also noticed that the implementation of the SINAES at URFN has been performed very slowly and the breadth and complexity of the evaluation process has contributed to hinder its implementation in all dimensions provided by MEC. Although it was observed that in its operationalization the SINAES has assumed a more normative assessment and directed to establish rankings between courses and higher education schools than to establish a more qualitative assessment in this system. As regards the evaluation of the undergraduate course studied on this research and subjected to the three dimensions of evaluation proposed by SINAES (self-assessment, Evaluation of Courses and ENADE) it was not possible to verify an effective integration between the methods of assessing conducted. The results are considered separately, in only a partial view of the course evaluated the proposal what pits the SINAES as a system that involves the totality
Resumo:
The main objective of this thesis was the study of bracing panels of structural masonry, by applying the Finite Element Method and Strut and Tie Method. It was analyzed the following aspects: the effect of orthotropy on the behavior of the panels; distribution of horizontal forces between panels for buildings; comparison between Equivalent Frame and Finite Elements models; panels design with the Strut and Tie Method. The results showed that one should not disregard the orthotropy, otherwise this can lead to models stiffer than the real. Regarding the distribution of horizontal forces, showed that the disregard of lintels and shear deformation leads to significant differences in the simplified model. The results showed also that the models in Finite Element and Equivalent Frame exhibit similar behavior in respect to stiffness of panels and stress distribution over the sessions requested. It was discussing criteria for designing Strut and Tie Method models in one floor panels. Then, the theoretical strength these panels was compared with the rupture strength of panels tested in the literature. The theoretical maximum strength were always less than the rupture strength of the panels obtained in tests, due to the fact that the proposed model cannot represent the behavior of the masonry after the start of the panel cracking due to plasticization of the reinforcement
Resumo:
Usually masonry structures has low tension strength, hence the design to flexural efforts can results in high reinforcement ratio, specification of high unit and prism strength, structural members with larger section dimensions and modification in structural arrangement to be possible to use masonry members. The main objective of this study is to evaluate the stiffness, the efforts distribution and the effect of horizontal elements (girders) and vertical elements (counterforts) distribution on the behavior of masonry blocks retaining walls. For this purpose, numerical modeling was performed on typical retaining wall arrangements by varying the amount and placement of horizontal and vertical elements, beyond includes elements simulating the reactions of the soil supporting the foundation of the wall. The numerical modeling also include the macro modeling strategy in which the units, mortar and grout are discretized by a standard volume that represents the masonry elastic behavior. Also, numerical model results were compared with those ones of simplified models usually adopted in bending design of masonry elements. The results show horizontal displacements, principal and shear stresses distribution, and bending moments diagrams. From the analysis it was concluded that quantity and manner of distribution of the girders are both important factors to the panel flexural behavior, the inclusion of the foundation changed significantly the behavior of the wall, especially the horizontal displacements, and has been proposed a new way of considering the flanges section of the counterforts
Resumo:
natural resources that still enjoy, in the certainty that if we do not, could culminate at the end of that remains. The environmental contamination by fuels in the retail service of oil and biofuels, has been a subject of growing research in Brazil, due to the large pollution potential of this activity. The aim of this study was to evaluate the importance of implementing the Environmental Management System (EMS) in fuel retail service stations in the city of Parnamirim-RN, but also describe the current situation the same as licensing and environmental characterization; identify existing barriers to implementation of EMS on the costs, technologies, knowledge, vision, present the potential benefits for the implementation of the EMS (social, economic and environmental), to identify the existence of plans for future action to implement the EMS , as a subsidy to promote the implementation of it. The methodology was developed through analysis of documents provided by the environmental agency responsible for licensing of retail service stations and fuel pala ANP. For data collection, we used the questionnaire was applied directly to managers or managers of sub-stations. Data were collected in 12 of 30 posts in the municipality. For purposes of data treatment was performed a descriptive analysis with respect to the opinion of twelve managers (respondents). The data acquired, according to the Likert scale were tabulated and analyzed using software SPSS 17.0 and Excel 2003, it was generated tables and graphs to observe the behavior of the data. The results showed that most respondents have a schooling level higher (58.3%) of the jobs surveyed 50% work on average 6 to 10 years and 41.6% are in operation for over 11 years , 75.0% do not have a license to operate and 12 stations, 58.3% were sued for not having a license to operate and are therefore in full commercial activity, 83% of jobs have some practice environmentally responsible, 75% agree in making planning future action to implement 8 the EMS in their ventures, 70% in full agreement that the high cost is a form of impediment to implementation of EMS; 66.67% agreed that resistance to change is an impediment to implementation of EMS; 90.91% agreed that the implementation of EMS is very complex, 80% of respondents agreed in a very significant environmental legislation is also a key factor preventing the implementation of EMS is noteworthy that 100% of respondents agreed that the knowledge about the use of the EMS will help to solve environmental problems in the fuel retail service stations, the implementation of the EMS will benefit with increased efficiency of resources applied to the findings by the agreement of 91.66% of respondents, where only 8, 33% disagreed, there was also a percentage of 100%, agreed that the company's image will be a great benefit, but also a contribution to solving environmental problems in the fuel retail service stations. Thus, the importance of the implementation of EMS in the fuel retail service stations in the city of Parnamirim-RN, with an urgent need to be deployed. And the bodies responsible for policy on state-run and supervise more tightly and action, this type of activity, in order to regulate the sustainable functioning of retail service stations of fuel, thus promoting a better quality of life for the population of the municipality of natal-RN
Resumo:
The use of flexible materials for the development of planar circuits is one of the most desired and studied characteristics, lately, by researchers. This happens because the flexibility of the substrate can provide previously impracticable applications, due to the rigidity of the substrates normally used that makes it difficult to fit into the circuits in irregular surfaces. The constant interest in recent years for more lighter devices, increasingly more compacts, flexible and with low cost, led to a new line of research of great interest from both academic and technological views, that is the study and development of textile substrates that can be applied in the development of planar circuits, for applications in the areas of security, biomedical and telecommunications. This paper proposes the development of planar circuits, such as antennas , frequency selective surfaces (FSS) and planar filters, using textile (cotton ticking, jeans and brim santista) as the dielectric substrate and the Pure Copper Polyester Taffeta Fabric, a textile of pure copper, highly conductive, lightweight and flexible, commercially sold as a conductive material. The electrical characteristics of textiles (electric permittivity and loss tangent) were characterized using the transmission line method (rectangular waveguide) and compared with those found in the literature. The structures were analyzed using commercial software Ansoft Designer and Ansoft HFSS, both from the company Ansys and for comparison we used the Iterative Method of Waves (WCIP). For the purpose of validation were built and measured several prototypes of antennas, planar filters and FSS, being possible to confirm an excellent agreement between simulated and measured results
Resumo:
The advantage in using vegetable fibres in place of synthetic fibres such as glass fibre, for reinforcements in composites are: biodegradability, low cost, low density, good tenacity, good thermal properties, low energy content and reduced use of instruments for its treatment or processing. Even though, problems related to low mechanical performance of some of the natural fibres, has caused difficulty in their direct application in structural elements. The use of alternative materials like hybrid composites has been encouraged, thus trying to better the structural performance of the composites with natural fibres. This work presents a comparative study of the strength and stiffness of hybrid composites with orthopthalic polyester matrix reinforced with E-fibre glass, jute and curauá. The experimental part includes uniaxial tension and three point bending tests to determine the mechanical properties of the final product. The hybrid composite was manufactured in a local industry and was in the form of laminates. All the samples were projected to withstand the possible structural applications as reservoirs and pipes. CH (laminated hybrid composite with glass and curauá fibres). The results obtained show clearly the influence of the hybridization in all the types tested and indicate a good mechanical performance of the composite with glass/curauá fibres in relation to the composite with glass fibres. Aspects in relation to the interfaces glass/curauá composites besides the fracture characteristics for all loading types were also analysed
Resumo:
The advantages of the use of vegetable fibers on the synthetic fibers, such as glass fibers, in the reinforcements in composites are: low cost, low density, good tenacity, good thermal properties and reduced use of instruments for their treatment or processing. However, problems related to poor performance of some mechanical natural fibers, have hindered its direct use in structural elements. In this sense, the emergence of alternative materials such as hybrids composites, involving natural and synthetic fibers, has been encouraged by seeking to improve the performance of structural composites based only on natural fibers. The differences between the physical, chemical and mechanical properties of these fibers, especially facing the adverse environmental conditions such as the presence of moisture and ultraviolet radiation, is also becoming a concern in the final response of these composites. This piece of research presents a comparative study of the strength and stiffness between two composite, both of ortoftalic polyester matrix, one reinforced with fibers of glass-E (CV) and other hybrid reinforced with natural fibers of curauá and fiberglass-E (CH). All the comparative study is based on the influence of exposure to UV rays and steam heated water in composites, simulating the aging environment. The conditions for the tests are accelerated through the use of the aging chamber. The composites will be evaluated through tests of uniaxial static mechanical traction and bending on three points. The composite of glass fiber and hybrid manufacturing industry are using the rolling manual (hand lay-up) and have been developed in the form of composites. All were designed to meet possible structural applications such as tanks and pipes. The reinforcements used in composites were in the forms of short fiber glass-E quilts (450g/m2 - 5cm) of continuous wires and fuses (whose title was of 0.9 dtex) for the curauá fibers. The results clearly show the influence of aging on the environmental mechanical performance of the composite CV and CH. The issues concerning the final characteristics of the fracture for all types of cargoes studied were also analyzed
Resumo:
This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed
Resumo:
The manufacture of prostheses for lower limb amputees (transfemural and transtibial) requires the preparation of a cartridge with appropriate and custom fit to the profile of each patient. The traditional process to the patients, mainly in public hospitals in Brazil, begins with the completion of a form where types of equipment, plugins, measures, levels of amputation etc. are identified. Currently, such work is carried out manually using a common metric tape and caliper of wood to take the measures of the stump, featuring a very rudimentary, and with a high degree of uncertainty geometry of the final product. To address this problem, it was necessary to act in two simultaneously and correlated directions. Originally, it was developed an integrated tool for viewing 3D CAD for transfemoral types of prostheses and transtibial called OrtoCAD I. At the same time, it was necessary to design and build a reader Mechanical equipment (sort of three-dimensional scanner simplified) able to obtain, automatically and with accuracy, the geometric information of either of the stump or the healthy leg. The methodology includes the application of concepts of reverse engineering to computationally generate the representation of the stump and/or the reverse image of the healthy member. The materials used in the manufacturing of prostheses nor always obey to a technical scientific criteria, because, if by one way it meets the criteria of resistance, by the other, it brings serious problems mainly due to excess of weight. This causes to the user various disorders due to lack of conformity. That problem was addressed with the creation of a hybrid composite material for the manufacture of cartridges of prostheses. Using the Reader Fitter and OrtoCAD, the new composite material, which aggregates the mechanical properties of strength and rigidity on important parameters such as low weight and low cost, it can be defined in its better way. Besides, it brings a reduction of up steps in the current processes of manufacturing or even the feasibility of using new processes, in the industries, in order to obtain the prostheses. In this sense, the hybridization of the composite with the combination of natural and synthetic fibers can be a viable solution to the challenges offered above
Resumo:
Present work proposed to map and features the wear mechanisms of structural polymers of engineering derived of the sliding contact with a metallic cylindrical spindle submitted to eccentricity due to fluctuations in it is mass and geometric centers. For this it was projected and makes an experimental apparatus from balancing machine where the cylindrical counterbody was supported in two bearings and the polymeric coupon was situated in a holder with freedom of displacement along counterbody. Thus, the experimental tests were standardized using two position of the two bearings (Fixed or Free) and seven different positions along the counterbody, that permit print different conditions to the stiffness from system. Others parameters as applied normal load, sliding velocity and distance were fixed. In this investigation it was used as coupon two structural polymers of wide quotidian use, PTFE (polytetrafluroethylene) and PEEK (poly-ether-ether-ketone) and the AISI 4140 alloy steel as counterbody. Polymeric materials were characterized by thermal analysis (thermogravimetric, differential scanning calorimetry and dynamic-mechanical), hardness and rays-X diffractometry. While the metallic material was submitted at hardness, mechanical resistance tests and metallographic analysis. During the tribological tests were recorded the heating response with thermometers, yonder overall velocity vibration (VGV) and the acceleration using accelerometers. After tests the wear surface of the coupons were analyzed using a Scanning Electronic Microscopy (SEM) to morphological analysis and spectroscopy EDS to microanalysis. Moreover the roughness of the counterbody was characterized before and after the tribological tests. It was observed that the tribological response of the polymers were different in function of their distinct molecular structure. It were identified the predominant wear mechanisms in each polymer. The VGV of the PTFE was smaller than PEEK, in the condition of minimum stiffness, in function of the higher loss coefficient of that polymer. Wear rate of the PTFE was more of a magnitude order higher than PEEK. With the results was possible developed a correlation between the wear rate and parameter (E/ρ)1/2 (Young modulus, E, density, ρ), proportional at longitudinal elastic wave velocity in the material.
Resumo:
The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat
Resumo:
The growing demand in the use of composite materials necessitates a better understanding its behavior to many conditions of loading and service, as well as under several ways of connections involved in mechanisms of structural projects. It is know that most of the structural elements are designed with presence of geometric discontinuities (holes, notches, etc) in their longitudinal sections and / or transversals, and that these discontinuities affect the mechanical response of these elements. This work has aims to analyze a study of the mechanical response, when in the presence geometric discontinuity, of polymer matrix composite laminates (orthophthalic polyester) to the uniaxial tensile test. The geometric discontinuity is characterized by the presence of a center hole in the transversal section of the composite. In this study, different kinds of stacking sequences are tested, with and without the presence of the hole, so as to provide better understanding of the mechanical properties. This sense, two laminates were studied: the first is only reinforced by with seven layers short mats of fiberglass-E (CM) and the second where the reinforcement of fiberglass-E comes in the form of bidirectional fabric (CT), with only four layers. The laminate CT has the presence of anisotropy (sense of continuous fibers with respect to the applied load) as the main parameter influencing its mechanical behavior, behavior this, not observed for the CM. In addition to the mechanical properties was also studied the fracture characteristics developed in each composite laminated. The results also showed that the presence of the hole in the transversal section decreased the ultimate strength of laminates and changed the final characteristic of fracture in all kinds of composite laminated studied
Resumo:
This research work is based, in search of reinforcement s vegetable alternative to polymer composites. The idealization of making a hybrid composite reinforced with vegetable fibers licuri with synthetic fibers is a pioneer in this area. Thus was conceived a hybrid composite laminate consisting of 05 (five) layers being 03 (three) webs of synthetic fibers of glass and E-02 (two) unidirectional fabrics of vegetable fibers licuri. In the configuration of the laminate layers have alternating distribution. The composite laminate was manufactured in Tecniplas Commerce & Industry LTD, in the form of a card through the manufacturing process of hand lay up. Licuri fibers used in making the foil were the City of Mare Island in the state of Bahia. After cooking and the idealization of the hybrid composite laminate, the objective of this research work has focused on evaluating the performance of the mechanical properties (ultimate strength, stiffness and elongation at break) through uniaxial tensile tests and three point bending. Comparative studies of the mechanical properties and as well as among other types of laminated hybrid composites studied previously, were performed. Promising results were found with respect to the mechanical properties of strength and stiffness to the hybridization process idealized here. To complement the entire study were analyzed in terms of macroscopic and microscopic characteristics of the fracture for all tests.
Resumo:
The growing demand in the use of hybrid composite materials makes it essential a better understanding of their behavior face of various design conditions, such as the presence of geometric discontinuities in the cross section of structural elements. This way, the purpose of this dissertation is a study of the mechanical response (strength and stiffness), modes (characteristics) of fracture and Residual Strength of an hybrid polymeric composite with and without a geometric discontinuity in its longitudinal section (with a reduction in the cross section) loaded by uniaxial tension. This geometric discontinuity is characterized by central holes of different diameters. The hybrid composite was fabricated as laminate (plate) and consisting of ortho-tereftalic polyester matrix reinforced by 04 outer layers of Jute fibers bidirectional fabrics and 01 central layer of E-glass bidirectional fabric. The laminate was industrially manufactured (Tecniplas Nordeste Indústria e Comércio Ltda.), obtained by the hand lay-up technique. Initially, a study of the volumetric density of the laminate was made in order to verify its use in lightweight structures. Also were performed comparative studies on the mechanical properties and fracture modes under the conditions of the specimens without the central hole and with the different holes. For evaluating the possible influence of the holes in the structural stability of the laminate, the Residual Strength of the composite was determined for each case of variation in hole diameter. As a complementary study, analyses of the macroscopic final fracture characteristic of the laminates were developed. The presence of the central hole of any sizes, negatively changed the ultimate tensile strength. Regarding the elastic modulus, moreover, the difference found between the specimens was within the range of tests displacement, showing the laminate stability related to the stiffness
Resumo:
This study aims to evaluate the mechanical properties of polymer matrix composites reinforced with sisal fabric bidirectional tissue (Agave sisalana,) and E-glass fibers, containing the following configuration: a polymer matrix hybrid composite (Polyester Resin orthophalic) reinforced with three (3) layers of glass fibers and alternating-2 (two) layers of bidirectional sisal fabric, and finally a composite of polymer matrix reinforced with five (5) layers of glass fiber mat-type E. For this purpose as first step, the preparation of by sisal, since they are not on the market. The composites were made by manual lamination (Hand lay-up) and evaluated for tensile properties and three point bending both in the dry, and wet conditions aswele as immersed in oil. Macroscopic and microscopic characteristics of the materialsweve awalysed, after the completion of the mechanical tests. After the studies, it was proven that the sisal fiber decreases the tensile stiffness of the material above 50% for both situations studied the tensile strength of the material decreases by approximately 40% for the cases mentioned, and when compared to the specific strength stiffness values drop to 14.6% and 29.02% respectively for the dry state only. Constants for bending the values were are to approximately 50% to 25% for strength and stiffness of the material for the cases dry, wet and immersed in oil. Under the influence of tension fluids do not interfere in the stiffness of the material for the bending tests, the same does not occur with the resistance, and these values are modified only in the cases stiffness and flexural strength