98 resultados para Redes neurais ARTMAP nebulosa


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab®

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional methods to solve the problem of blind source separation nonlinear, in general, using series of restrictions to obtain the solution, often leading to an imperfect separation of the original sources and high computational cost. In this paper, we propose an alternative measure of independence based on information theory and uses the tools of artificial intelligence to solve problems of blind source separation linear and nonlinear later. In the linear model applies genetic algorithms and Rényi of negentropy as a measure of independence to find a separation matrix from linear mixtures of signals using linear form of waves, audio and images. A comparison with two types of algorithms for Independent Component Analysis widespread in the literature. Subsequently, we use the same measure of independence, as the cost function in the genetic algorithm to recover source signals were mixed by nonlinear functions from an artificial neural network of radial base type. Genetic algorithms are powerful tools for global search, and therefore well suited for use in problems of blind source separation. Tests and analysis are through computer simulations

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation contributes for the development of methodologies through feed forward artificial neural networks for microwave and optical devices modeling. A bibliographical revision on the applications of neuro-computational techniques in the areas of microwave/optical engineering was carried through. Characteristics of networks MLP, RBF and SFNN, as well as the strategies of supervised learning had been presented. Adjustment expressions of the networks free parameters above cited had been deduced from the gradient method. Conventional method EM-ANN was applied in the modeling of microwave passive devices and optical amplifiers. For this, they had been proposals modular configurations based in networks SFNN and RBF/MLP objectifying a bigger capacity of models generalization. As for the training of the used networks, the Rprop algorithm was applied. All the algorithms used in the attainment of the models of this dissertation had been implemented in Matlab

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial automation networks is in focus and is gradually replacing older architectures of systems used in automation world. Among existing automation networks, most prominent standard is the Foundation Fieldbus (FF). This particular standard was chosen for the development of this work thanks to its complete application layer specification and its user interface, organized as function blocks and that allows interoperability among different vendors' devices. Nowadays, one of most seeked solutions on industrial automation are the indirect measurements, that consist in infering a value from measures of other sensors. This can be made through implementation of the so-called software sensors. One of the most used tools in this project and in sensor implementation are artificial neural networks. The absence of a standard solution to implement neural networks in FF environment makes impossible the development of a field-indirect-measurement project, besides other projects involving neural networks, unless a closed proprietary solution is used, which dos not guarantee interoperability among network devices, specially if those are from different vendors. In order to keep the interoperability, this work's goal is develop a solution that implements artificial neural networks in Foundation Fieldbus industrial network environment, based on standard function blocks. Along the work, some results of the solution's implementation are also presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work has as main objective the application of Artificial Neural Networks, ANN, in the resolution of problems of RF /microwaves devices, as for example the prediction of the frequency response of some structures in an interest region. Artificial Neural Networks, are presently a alternative to the current methods of analysis of microwaves structures. Therefore they are capable to learn, and the more important to generalize the acquired knowledge, from any type of available data, keeping the precision of the original technique and adding the low computational cost of the neural models. For this reason, artificial neural networks are being increasily used for modeling microwaves devices. Multilayer Perceptron and Radial Base Functions models are used in this work. The advantages/disadvantages of these models and the referring algorithms of training of each one are described. Microwave planar devices, as Frequency Selective Surfaces and microstrip antennas, are in evidence due the increasing necessities of filtering and separation of eletromagnetic waves and the miniaturization of RF devices. Therefore, it is of fundamental importance the study of the structural parameters of these devices in a fast and accurate way. The presented results, show to the capacities of the neural techniques for modeling both Frequency Selective Surfaces and antennas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to create an artificial neural network (ANN) capable of modeling the transverse elasticity modulus (E2) of unidirectional composites. To that end, we used a dataset divided into two parts, one for training and the other for ANN testing. Three types of architectures from different networks were developed, one with only two inputs, one with three inputs and the third with mixed architecture combining an ANN with a model developed by Halpin-Tsai. After algorithm training, the results demonstrate that the use of ANNs is quite promising, given that when they were compared with those of the Halpín-Tsai mathematical model, higher correlation coefficient values and lower root mean square values were observed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes the development of a nonlinear control strategy for an electro-hydraulic actuated system. The system to be controlled is represented by a third order ordinary differential equation subject to a dead-zone input. The control strategy is based on a nonlinear control scheme, combined with an artificial intelligence algorithm, namely, the method of feedback linearization and an artificial neural network. It is shown that, when such a hard nonlinearity and modeling inaccuracies are considered, the nonlinear technique alone is not enough to ensure a good performance of the controller. Therefore, a compensation strategy based on artificial neural networks, which have been notoriously used in systems that require the simulation of the process of human inference, is used. The multilayer perceptron network and the radial basis functions network as well are adopted and mathematically implemented within the control law. On this basis, the compensation ability considering both networks is compared. Furthermore, the application of new intelligent control strategies for nonlinear and uncertain mechanical systems are proposed, showing that the combination of a nonlinear control methodology and artificial neural networks improves the overall control system performance. Numerical results are presented to demonstrate the efficacy of the proposed control system

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the current major concerns in engineering is the development of aircrafts that have low power consumption and high performance. So, airfoils that have a high value of Lift Coefficient and a low value for the Drag Coefficient, generating a High-Efficiency airfoil are studied and designed. When the value of the Efficiency increases, the aircraft s fuel consumption decreases, thus improving its performance. Therefore, this work aims to develop a tool for designing of airfoils from desired characteristics, as Lift and Drag coefficients and the maximum Efficiency, using an algorithm based on an Artificial Neural Network (ANN). For this, it was initially collected an aerodynamic characteristics database, with a total of 300 airfoils, from the software XFoil. Then, through the software MATLAB, several network architectures were trained, between modular and hierarchical, using the Back-propagation algorithm and the Momentum rule. For data analysis, was used the technique of cross- validation, evaluating the network that has the lowest value of Root Mean Square (RMS). In this case, the best result was obtained for a hierarchical architecture with two modules and one layer of hidden neurons. The airfoils developed for that network, in the regions of lower RMS, were compared with the same airfoils imported into the software XFoil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fundamental senses of the human body are: vision, hearing, touch, taste and smell. These senses are the functions that provide our relationship with the environment. The vision serves as a sensory receptor responsible for obtaining information from the outside world that will be sent to the brain. The gaze reflects its attention, intention and interest. Therefore, the estimation of gaze direction, using computer tools, provides a promising alternative to improve the capacity of human-computer interaction, mainly with respect to those people who suffer from motor deficiencies. Thus, the objective of this work is to present a non-intrusive system that basically uses a personal computer and a low cost webcam, combined with the use of digital image processing techniques, Wavelets transforms and pattern recognition, such as artificial neural network models, resulting in a complete system that performs since the image acquisition (including face detection and eye tracking) to the estimation of gaze direction. The obtained results show the feasibility of the proposed system, as well as several feature advantages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diesel fuel is one of leading petroleum products marketed in Brazil, and has its quality monitored by specialized laboratories linked to the National Agency of Petroleum, Natural Gas and Biofuels - ANP. The main trial evaluating physicochemical properties of diesel are listed in the resolutions ANP Nº 65 of December 9th, 2011 and Nº 45 of December 20th, 2012 that determine the specification limits for each parameter and methodologies of analysis that should be adopted. However the methods used although quite consolidated, require dedicated equipment with high cost of acquisition and maintenance, as well as technical expertise for completion of these trials. Studies for development of more rapid alternative methods and lower cost have been the focus of many researchers. In this same perspective, this work conducted an assessment of the applicability of existing specialized literature on mathematical equations and artificial neural networks (ANN) for the determination of parameters of specification diesel fuel. 162 samples of diesel with a maximum sulfur content of 50, 500 and 1800 ppm, which were analyzed in a specialized laboratory using ASTM methods recommended by the ANP, with a total of 810 trials were used for this study. Experimental results atmospheric distillation (ASTM D86), and density (ASTM D4052) of diesel samples were used as basic input variables to the equations evaluated. The RNAs were applied to predict the flash point, cetane number and sulfur content (S50, S500, S1800), in which were tested network architectures feed-forward backpropagation and generalized regression varying the parameters of the matrix input in order to determine the set of variables and the best type of network for the prediction of variables of interest. The results obtained by the equations and RNAs were compared with experimental results using the nonparametric Wilcoxon test and Student's t test, at a significance level of 5%, as well as the coefficient of determination and percentage error, an error which was obtained 27, 61% for the flash point using a specific equation. The cetane number was obtained by three equations, and both showed good correlation coefficients, especially equation based on aniline point, with the lowest error of 0,816%. ANNs for predicting the flash point and the index cetane showed quite superior results to those observed with the mathematical equations, respectively, with errors of 2,55% and 0,23%. Among the samples with different sulfur contents, the RNAs were better able to predict the S1800 with error of 1,557%. Generally, networks of the type feedforward proved superior to generalized regression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Artificial Neural Networks (ANN), which is one of the branches of Artificial Intelligence (AI), are being employed as a solution to many complex problems existing in several areas. To solve these problems, it is essential that its implementation is done in hardware. Among the strategies to be adopted and met during the design phase and implementation of RNAs in hardware, connections between neurons are the ones that need more attention. Recently, are RNAs implemented both in application specific integrated circuits's (Application Specific Integrated Circuits - ASIC) and in integrated circuits configured by the user, like the Field Programmable Gate Array (FPGA), which have the ability to be partially rewritten, at runtime, forming thus a system Partially Reconfigurable (SPR), the use of which provides several advantages, such as flexibility in implementation and cost reduction. It has been noted a considerable increase in the use of FPGAs for implementing ANNs. Given the above, it is proposed to implement an array of reconfigurable neurons for topologies Description of artificial neural network multilayer perceptrons (MLPs) in FPGA, in order to encourage feedback and reuse of neural processors (perceptrons) used in the same area of the circuit. It is further proposed, a communication network capable of performing the reuse of artificial neurons. The architecture of the proposed system will configure various topologies MLPs networks through partial reconfiguration of the FPGA. To allow this flexibility RNAs settings, a set of digital components (datapath), and a controller were developed to execute instructions that define each topology for MLP neural network.