54 resultados para Predição de falhas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this dissertation new models of propagation path loss predictions are proposed by from techniques of optimization recent and measures of power levels for the urban and suburban areas of Natal, city of Brazilian northeast. These new proposed models are: (i) a statistical model that was implemented based in the addition of second-order statistics for the power and the altimetry of the relief in model of linear losses; (ii) a artificial neural networks model used the training of the algorithm backpropagation, in order to get the equation of propagation losses; (iii) a model based on the technique of the random walker, that considers the random of the absorption and the chaos of the environment and than its unknown parameters for the equation of propagation losses are determined through of a neural network. The digitalization of the relief for the urban and suburban areas of Natal were carried through of the development of specific computational programs and had been used available maps in the Statistics and Geography Brazilian Institute. The validations of the proposed propagation models had been carried through comparisons with measures and propagation classic models, and numerical good agreements were observed. These new considered models could be applied to any urban and suburban scenes with characteristic similar architectural to the city of Natal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2.5D ray-tracing propagation model is proposed to predict radio loss in indoor environment. Specifically, we opted for the Shooting and Bouncing Rays (SBR) method, together with the Geometrieal Theory of Diffrartion (GTD). Besides the line-of-sight propagation (LOS), we consider that the radio waves may experience reflection, refraction, and diffraction (NLOS). In the Shooting and Bouncing Rays (SBR) method, the transmitter antenna launches a bundle of rays that may or may not reach the receiver. Considering the transmitting antenna as a point, the rays will start to launch from this position and can reach the receiver either directly or after reflections, refractions, diffractions, or even after any combination of the previous effects. To model the environment, a database is built to record geometrical characteristics and information on the constituent materials of the scenario. The database works independently of the simulation program, allowing robustness and flexibility to model other seenarios. Each propagation mechanism is treated separately. In line-of-sight propagation, the main contribution to the received signal comes from the direct ray, while reflected, refracted, and diffracted signal dominate when the line-of-sight is blocked. For this case, the transmitted signal reaches the receiver through more than one path, resulting in a multipath fading. The transmitting channel of a mobile system is simulated by moving either the transmitter or the receiver around the environment. The validity of the method is verified through simulations and measurements. The computed path losses are compared with the measured values at 1.8 GHz ftequency. The results were obtained for the main corridor and room classes adjacent to it. A reasonable agreement is observed. The numerical predictions are also compared with published data at 900 MHz and 2.44 GHz frequencies showing good convergence

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semiconductor technologies evolutions leads devices to be developed with higher processing capability. Thus, those components have been used widely in more fields. Many industrial environment such as: oils, mines, automotives and hospitals are frequently using those devices on theirs process. Those industries activities are direct related to environment and health safe. So, it is quite important that those systems have extra safe features yield more reliability, safe and availability. The reference model eOSI that will be presented by this work is aimed to allow the development of systems under a new view perspective which can improve and make simpler the choice of strategies for fault tolerant. As a way to validate the model na architecture FPGA-based was developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The telecommunications industry has experienced recent changes, due to increasing quest for access to digital services for data, video and multimedia, especially using the mobile phone networks. Recently in Brazil, mobile operators are upgrading their networks to third generations systems (3G) providing to users broadband services such as video conferencing, Internet, digital TV and more. These new networks that provides mobility and high data rates has allowed the development of new market concepts. Currently the market is focused on the expansion of WiMAX technology, which is gaining increasingly the market for mobile voice and data. In Brazil, the commercial interest for this technology appears to the first award of licenses in the 3.5 GHz band. In February 2003 ANATEL held the 003/2002/SPV-ANATEL bidding, where it offered blocks of frequencies in the range of 3.5 GHz. The enterprises who purchased blocks of frequency were: Embratel, Brazil Telecom (Vant), Grupo Sinos, Neovia and WKVE, each one with operations spread in some regions of Brazil. For this and other wireless communications systems are implemented effectively, many efforts have been invested in attempts to developing simulation methods for coverage prediction that is close to reality as much as possible so that they may become believers and indispensable tools to design wireless communications systems. In this work wasm developed a genetic algorithm (GA's) that is able to optimize the models for predicting propagation loss at applicable frequency range of 3.5 GHz, thus enabling an estimate of the signal closer to reality to avoid significant errors in planning and implementation a system of wireless communication

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a diagnosis faults system (rotor, stator, and contamination) of three-phase induction motor through equivalent circuit parameters and using techniques patterns recognition. The technology fault diagnostics in engines are evolving and becoming increasingly important in the field of electrical machinery. The neural networks have the ability to classify non-linear relationships between signals through the patterns identification of signals related. It is carried out induction motor´s simulations through the program Matlab R & Simulink R , and produced some faults from modifications in the equivalent circuit parameters. A system is implemented with multiples classifying neural network two neural networks to receive these results and, after well-trained, to accomplish the identification of fault´s pattern

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of wireless telecommunication in the last years has been great. It has been taking academics to conceive new ideas and techniques. Their aims are to increase the capacity and the quality of the system s services. Cells that are smaller every time, frequencies that are every time higher and environments that get more and more complex, all those facts deserve more accurate models the propagation prediction techniques are inserted in this context and results with a merger of error that is compatible with the next generations of communication systems. The objective of this Work is to present results of a propagation measurement campaign, aiming at pointing the characteristics of the mobile systems covering in the city of Natal (state of Rio Grande do Norte, Brazil). A mobile laboratory was set up, using the infra-structure available and frequently used by ANATEL. The measures were taken in three different areas: one characterized by high buildings, high relief, presence of trees and towers of different highs. These areas covered the city s central zone, a suburban / rural zone and a section of coast surrounded by sand dunes. It is important to highlight that the analysis was made taking into consideration the actual reality of cellular systems with covering ranges by reduced cells, with the intent of causing greater re-use of frequencies and greater capacity of telephone traffic. The predominance of telephone traffic by cell in the city of Natal occurs within a range inferior to 3 (three) km from the Radio-Base Station. The frequency band used was 800 MHz, corresponding to the control channels of the respective sites, which adopt the FSK modulation technique. This Dissertation starts by presenting a general vision of the models used for predicting propagation. Then, there is a description of the methodology used in the measuring, which were done using the same channels of control of the cellular system. The results obtained were compared with many existing prediction models, and some adaptations were developed by using regression techniques trying to obtain the most optimized solutions. Furthermore, according to regulations from the old Brazilian Holding Telebrás, a minimum covering of 90% of a determined previously area, in 90% of the time, must be obeyed when implanting cellular systems. For such value to be reached, considerations and studies involving the specific environment that is being covered are important. The objective of this work is contribute to this aspect

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab®

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the most important goals of bioinformatics is the ability to identify genes in uncharacterized DNA sequences on world wide database. Gene expression on prokaryotes initiates when the RNA-polymerase enzyme interacts with DNA regions called promoters. In these regions are located the main regulatory elements of the transcription process. Despite the improvement of in vitro techniques for molecular biology analysis, characterizing and identifying a great number of promoters on a genome is a complex task. Nevertheless, the main drawback is the absence of a large set of promoters to identify conserved patterns among the species. Hence, a in silico method to predict them on any species is a challenge. Improved promoter prediction methods can be one step towards developing more reliable ab initio gene prediction methods. In this work, we present an empirical comparison of Machine Learning (ML) techniques such as Na¨ýve Bayes, Decision Trees, Support Vector Machines and Neural Networks, Voted Perceptron, PART, k-NN and and ensemble approaches (Bagging and Boosting) to the task of predicting Bacillus subtilis. In order to do so, we first built two data set of promoter and nonpromoter sequences for B. subtilis and a hybrid one. In order to evaluate of ML methods a cross-validation procedure is applied. Good results were obtained with methods of ML like SVM and Naïve Bayes using B. subtilis. However, we have not reached good results on hybrid database

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work consists of the creation of a Specialist System which utilizes production rules to detect inadequacies in the command circuits of an operation system and commands of electric engines known as Direct Start. Jointly, three other modules are developed: one for the simulation of the commands diagram, one for the simulation of faults and another one for the correction of defects in the diagram, with the objective of making it possible to train the professionals aiming a better qualification for the operation and maintenance. The development is carried through in such a way that the structure of the task allows the extending of the system and a succeeding promotion of other bigger and more complex typical systems. The computational environment LabView is employed to enable the system

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A serious problem that affects an oil refinery s processing units is the deposition of solid particles or the fouling on the equipments. These residues are naturally present on the oil or are by-products of chemical reactions during its transport. A fouled heat exchanger loses its capacity to adequately heat the oil, needing to be shut down periodically for cleaning. Previous knowledge of the best period to shut down the exchanger may improve the energetic and production efficiency of the plant. In this work we develop a system to predict the fouling on a heat exchanger from the Potiguar Clara Camarão Refinery, based on data collected in a partnership with Petrobras. Recurrent Neural Networks are used to predict the heat exchanger s flow in future time. This variable is the main indicator of fouling, because its value decreases gradually as the deposits on the tubes reduce their diameter. The prediction could be used to tell when the flow will have decreased under an acceptable value, indicating when the exchanger shutdown for cleaning will be needed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oil industry`s need to produce with maximum efficiency, not to mention the safety and the environment aspects, encourages the optimization of processes. It makes them look for a level of excellence in acquisition of equipment, ensuring the quality without prejudice security of facilities and peoples. Knowing the reliability of equipment and that this stands for a system is fundamental to the production strategy to seeks the maximum return on investment. The reliability analysis techniques have been increasingly applied in the industry as strategy for predicting failures likelihood ensuring the integrity of processes. Some reliability theories underlie the decisions to use stochastic calculations to estimate equipment failure. This dissertation proposes two techniques associating qualitative (through expertise opinion) and quantitative data (European North Sea oil companies fault database, Ored) applied on centrifugal pump to water injection system for secondary oil recovery on two scenarios. The data were processed in reliability commercial software. As a result of hybridization, it was possible to determine the pump life cycle and what impact on production if it fails. The technique guides the best maintenance policy - important tool for strategic decisions on asset management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to predict future rewards or threats is crucial for survival. Recent studies have addressed future event prediction by the hippocampus. Hippocampal neurons exhibit robust selectivity for spatial location. Thus, the activity of hippocampal neurons represents a cognitive map of space during navigation as well as during planning and recall. Spatial selectivity allows the hippocampus to be involved in the formation of spatial and episodic memories, including the sequential ordering of events. On the other hand, the discovery of reverberatory activity in multiple forebrain areas during slow wave and REM sleep underscored the role of sleep on the consolidation of recently acquired memory traces. To this date, there are no studies addressing whether neuronal activity in the hippocampus during sleep can predict regular environmental shifts. The aim of the present study was to investigate the activity of neuronal populations in the hippocampus during sleep sessions intercalated by spatial exploration periods, in which the location of reward changed in a predictable way. To this end, we performed the chronic implantation of 32-channel multielectrode arrays in the CA1 regions of the hippocampus in three male rats of the Wistar strain. In order to activate different neuronal subgroups at each cycle of the task, we exposed the animals to four spatial exploration sessions in a 4-arm elevated maze in which reward was delivered in a single arm per session. Reward location changed regularly at every session in a clockwise manner, traversing all the arms at the end of the daily recordings. Animals were recorded from 2-12 consecutive days. During spatial exploration of the 4-arm elevated maze, 67,5% of the recorded neurons showed firing rate differences across the maze arms. Furthermore, an average of 42% of the neurons showed increased correlation (R>0.3) between neuronal pairs in each arm. This allowed us to sort representative neuronal subgroups for each maze arm, and to analyze the activity of these subgroups across sleep sessions. We found that neuronal subgroups sorted by firing rate differences during spatial exploration sustained these differences across sleep sessions. This was not the case with neuronal subgroups sorted according to synchrony (correlation). In addition, the correlation levels between sleep sessions and waking patterns sampled in each arm were larger for the entire population of neurons than for the rate or synchrony subgroups. Neuronal activity during sleep of the entire neuronal population or subgroups did not show different correlations among the four arm mazes. On the other hand, we verified that neuronal activity during pre-exploration sleep sessions was significantly more similar to the activity patterns of the target arm than neuronal activity during pre-exploration sleep sessions. In other words, neuronal activity during sleep that precedes the task reflects more strongly the location of reward than neuronal activity during sleep that follows the task. Our results suggest that neuronal activity during sleep can predict regular environmental changes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To determine the frequency and type of complications related to removable partial denture (RPD) less, Kennedy Class I, over time . Materials and Methods: This observational study consisted of a sample of 65 users PPR lower arches in Kennedy Class I and dentures, rehabilitated in the Department of Dentistry, Federal University of Rio Grande do Norte (UFRN). Patients were followed through periodic controls during periods of 60 days, 6 months and 1 year from installation. After the first year of control had other returns annually. The occurrence of complications or prosthetic failure was observed and recorded in a specific clinical record over 39 months. The patterns of failures observed were classified in the following situations: occurrence of traumatic ulcers after 2 months of installation, lack of retention, fracture or caries in the rest, fracture or dislocation of the artificial teeth, the larger connector fracture, fracture clip fracture support, poor support (need to reline the denture) and prosthesis fracture. Results: The incidence of complications was low frequency, being higher in the second year of use of the prosthesis. Among the complications that occurred more is the loss of retention (31.57%). Failures more severe and difficult to solve as the fracture elements of the metal structure of the PPR had low occurrence and were represented by only one case of the larger connector (5.3%) fractures. Conclusion: Removable partial dentures mandibular free end opposing of the conventional dentures have a low complication rate after 39 months of use when subjected to periodic controls