19 resultados para Particle swarm optimization algorithm PSO
Resumo:
The modern industrial progress has been contaminating water with phenolic compounds. These are toxic and carcinogenic substances and it is essential to reduce its concentration in water to a tolerable one, determined by CONAMA, in order to protect the living organisms. In this context, this work focuses on the treatment and characterization of catalysts derived from the bio-coal, by-product of biomass pyrolysis (avelós and wood dust) as well as its evaluation in the phenol photocatalytic degradation reaction. Assays were carried out in a slurry bed reactor, which enables instantaneous measurements of temperature, pH and dissolved oxygen. The experiments were performed in the following operating conditions: temperature of 50 °C, oxygen flow equals to 410 mL min-1 , volume of reagent solution equals to 3.2 L, 400 W UV lamp, at 1 atm pressure, with a 2 hours run. The parameters evaluated were the pH (3.0, 6.9 and 10.7), initial concentration of commercial phenol (250, 500 and 1000 ppm), catalyst concentration (0, 1, 2, and 3 g L-1 ), nature of the catalyst (activated avelós carbon washed with dichloromethane, CAADCM, and CMADCM, activated dust wood carbon washed with dichloromethane). The results of XRF, XRD and BET confirmed the presence of iron and potassium in satisfactory amounts to the CAADCM catalyst and on a reduced amount to CMADCM catalyst, and also the surface area increase of the materials after a chemical and physical activation. The phenol degradation curves indicate that pH has a significant effect on the phenol conversion, showing better results for lowers pH. The optimum concentration of catalyst is observed equals to 1 g L-1 , and the increase of the initial phenol concentration exerts a negative influence in the reaction execution. It was also observed positive effect of the presence of iron and potassium in the catalyst structure: betters conversions were observed for tests conducted with the catalyst CAADCM compared to CMADCM catalyst under the same conditions. The higher conversion was achieved for the test carried out at acid pH (3.0) with an initial concentration of phenol at 250 ppm catalyst in the presence of CAADCM at 1 g L-1 . The liquid samples taken every 15 minutes were analyzed by liquid chromatography identifying and quantifying hydroquinone, p-benzoquinone, catechol and maleic acid. Finally, a reaction mechanism is proposed, cogitating the phenol is transformed into the homogeneous phase and the others react on the catalyst surface. Applying the model of Langmuir-Hinshelwood along with a mass balance it was obtained a system of differential equations that were solved using the Runge-Kutta 4th order method associated with a optimization routine called SWARM (particle swarm) aiming to minimize the least square objective function for obtaining the kinetic and adsorption parameters. Related to the kinetic rate constant, it was obtained a magnitude of 10-3 for the phenol degradation, 10-4 to 10-2 for forming the acids, 10-6 to 10-9 for the mineralization of quinones (hydroquinone, p-benzoquinone and catechol), 10-3 to 10-2 for the mineralization of acids.
Resumo:
The objective in the facility location problem with limited distances is to minimize the sum of distance functions from the facility to the customers, but with a limit on each distance, after which the corresponding function becomes constant. The problem has applications in situations where the service provided by the facility is insensitive after a given threshold distance (eg. fire station location). In this work, we propose a global optimization algorithm for the case in which there are lower and upper limits on the numbers of customers that can be served
Resumo:
The longshore sediment transport (LST) is determinant for the occurrence of morphological changes in coastal environments. Understanding their movement mechanisms and transport is an essential source of information for the project design and coastal management plans. This study aims to characterize, initially, the active hydrodynamic circulation in the study area, comprised of four beach sectors from the south coast of Natal, assessing the average annual LST obtained through three proven equations (CERC, Kamphuis and Bayram et al.), defining the best formulation for the study area in question, and analyze the seasonal variability and the decadal transport evolution. The coastal area selected for this work constitutes one of the main tourist corridors in the city, but has suffered serious damage resulting from associated effects of hydrodynamic forcings and their disorderly occupation. As a tool was used the Coastal Modelling System of Brazil (SMC-Brazil), which presents integrated a series of numerical models and a database, properly calibrated and validated for use in developing projects along the Brazilian coastline. The LST rates were obtained for 15 beach profiles distributed throughout the study area. Their extensions take into account the depth of closure calculated by Harllermeier equation, and regarding the physical properties of the sediment, typical values of sandy beaches were adopted, except for the average diameter, which was calculated through an optimization algorithm based on equilibrium profile formulation proposed by Dean. Overall, the results showed an intensification of hydrodynamic forcings under extreme sea wave conditions, especially along the headlands exist in the region. Among the analyzed equations, Bayram et al. was the most suitable for this type of application, with a predominant transport in the south-north direction and the highest rates within the order of 700.000 m3 /year to 2.000.000 m3 /year. The seasonal analysis also indicated a longitudinal transport predominance in the south to north, with the highest rates associated with the fall and winter seasons. In these periods are observed erosive beach states, which indicate a direct relationship between the sediment dynamics and the occurrence of more energetic sea states. Regarding the decadal evolution of transportation, it was found a decrease in transport rate from the 50’s to the 70’s, followed by an increase until the 2000’s, coinciding with the beginning of urbanization process in some stretches of the studied coastline.
Resumo:
Recentemente diversas técnicas de computação evolucionárias têm sido utilizadas em áreas como estimação de parâmetros de processos dinâmicos lineares e não lineares ou até sujeitos a incertezas. Isso motiva a utilização de algoritmos como o otimizador por nuvem de partÃculas (PSO) nas referidas áreas do conhecimento. Porém, pouco se sabe sobre a convergência desse algoritmo e, principalmente, as análises e estudos realizados têm se concentrado em resultados experimentais. Por isso, é objetivo deste trabalho propor uma nova estrutura para o PSO que permita analisar melhor a convergência do algoritmo de forma analÃtica. Para isso, o PSO é reestruturado para assumir uma forma matricial e reformulado como um sistema linear por partes. As partes serão analisadas de forma separada e será proposta a inserção de um fator de esquecimento que garante que a parte mais significativa deste sistema possua autovalores dentro do cÃrculo de raio unitário. Também será realizada a análise da convergência do algoritmo como um todo, utilizando um critério de convergência quase certa, aplicável a sistemas chaveados. Na sequência, serão realizados testes experimentais de maneira a verificar o comportamento dos autovalores após a inserção do fator de esquecimento. Posteriormente, os algoritmos de identificação de parâmetros tradicionais serão combinados com o PSO matricial, de maneira a tornar os resultados da identificação tão bons ou melhores que a identificação apenas com o PSO ou, apenas com os algoritmos tradicionais. Os resultados mostram a convergência das partÃculas em uma região delimitada e que as funções obtidas após a combinação do algoritmo PSO matricial com os algoritmos convencionais, apresentam maior generalização para o sistema apresentado. As conclusões a que se chega é que a hibridização, apesar de limitar a busca por uma partÃcula mais apta do PSO, permite um desempenho mÃnimo para o algoritmo e ainda possibilita melhorar o resultado obtido com os algoritmos tradicionais, permitindo a representação do sistema aproximado em quantidades maiores de frequências.