19 resultados para PLANTAS OLEAGINOSAS
Resumo:
Nowadays, where the market competition requires products with better quality and a constant search for cost savings and a better use of raw materials, the research for more efficient control strategies becomes vital. In Natural Gas Processin Units (NGPUs), as in the most chemical processes, the quality control is accomplished through their products composition. However, the chemical composition analysis has a long measurement time, even when performed by instruments such as gas chromatographs. This fact hinders the development of control strategies to provide a better process yield. The natural gas processing is one of the most important activities in the petroleum industry. The main economic product of a NGPU is the liquefied petroleum gas (LPG). The LPG is ideally composed by propane and butane, however, in practice, its composition has some contaminants, such as ethane and pentane. In this work is proposed an inferential system using neural networks to estimate the ethane and pentane mole fractions in LPG and the propane mole fraction in residual gas. The goal is to provide the values of these estimated variables in every minute using a single multilayer neural network, making it possibly to apply inferential control techniques in order to monitor the LPG quality and to reduce the propane loss in the process. To develop this work a NGPU was simulated in HYSYS R software, composed by two distillation collumns: deethanizer and debutanizer. The inference is performed through the process variables of the PID controllers present in the instrumentation of these columns. To reduce the complexity of the inferential neural network is used the statistical technique of principal component analysis to decrease the number of network inputs, thus forming a hybrid inferential system. It is also proposed in this work a simple strategy to correct the inferential system in real-time, based on measurements of the chromatographs which may exist in process under study
Resumo:
This work shows a study about the Generalized Predictive Controllers with Restrictions and their implementation in physical plants. Three types of restrictions will be discussed: restrictions in the variation rate of the signal control, restrictions in the amplitude of the signal control and restrictions in the amplitude of the Out signal (plant response). At the predictive control, the control law is obtained by the minimization of an objective function. To consider the restrictions, this minimization of the objective function is done by the use of a method to solve optimizing problems with restrictions. The chosen method was the Rosen Algorithm (based on the Gradient-projection). The physical plants in this study are two didactical systems of water level control. The first order one (a simple tank) and another of second order, which is formed by two tanks connected in cascade. The codes are implemented in C++ language and the communication with the system to be done through using a data acquisition panel offered by the system producer
Resumo:
It proposes a established computational solution in the development of a software to construct species-specific primers, used to improve the diagnosis of virus of plant for PCR. Primers are indispensable to PCR reaction, besides providing the specificity of the diagnosis. Primer is a synthetic, short, single stranded piece of DNA, used as a starter in PCR technique. It flanks the sequence desired to amplify. Species-specific primers indicate the well known region of beginning and ending where the polymerase enzyme is going to amplify on a certain species, i.e. it is specific for only a species. Thus, the main objective of this work is to automatize the process of choice of primers, optimizing the specificity of chosen primers by the traditional method
Resumo:
This work has as main objective to find mathematical models based on linear parametric estimation techniques applied to the problem of calculating the grow of gas in oil wells. In particular we focus on achieving grow models applied to the case of wells that produce by plunger-lift technique on oil rigs, in which case, there are high peaks in the grow values that hinder their direct measurement by instruments. For this, we have developed estimators based on recursive least squares and make an analysis of statistical measures such as autocorrelation, cross-correlation, variogram and the cumulative periodogram, which are calculated recursively as data are obtained in real time from the plant in operation; the values obtained for these measures tell us how accurate the used model is and how it can be changed to better fit the measured values. The models have been tested in a pilot plant which emulates the process gas production in oil wells