20 resultados para Ovino - Respiração
Resumo:
The interference of man in the middle atmosphere can be evidenced by the presence of carbon monoxide, gas associated with burning fossil fuels and carbon dioxide content, essential for respiration of plants and thermal balance of the Earth. In this thesis we initially evaluated the intensity of the spatial distribution of carbon monoxide in the Northeast of Brazil, and subsequently the behavior of temporal variations of the pollutants carbon monoxide and carbon dioxide in the atmospheric boundary layer Maxaranguape / RN. Research has shown that, driven by speculation and promoting the occupation of land for agriculture, cattle ranching and tourism in the Northeast of Brazil, the changes established by the man in the middle geomorphological affect the lower troposphere on a large scale, with a predominance of concentrations in central Pernambuco, Paraiba's south-central and central-west of Alagoas. However, the study of Maxaranguape / RN results showed little variation in carbon monoxide and carbon dioxide, with the speed of the wind persisting with values greater than 7.8 m / s, showing dispersion and diffusion of pollutants which resulted in faster renewal of local atmospheric air
Resumo:
Introdução: A obesidade infantil apresenta incidência crescente e as possíveis comorbidades, como alteração da função respiratória, estão cada vez mais presente nessa faixa etária. O tecido adiposo impõe carga ao sistema respiratório o que leva a um padrão restritivo. Essa condição sofre alterações com as mudanças posturais, onde a gravidade influencia o padrão respiratório de acordo com o posicionamento adotado. Objetivo: Avaliar a distribuição dos volumes total e regional e o movimento tóracoabdominal de crianças e adolescentes que estão acima do peso nas posturas supino e sentado. Métodos: Cinqüenta e duas crianças/adolescentes (8-12 anos) divididas em três grupos: Grupo Obeso (GO=22); Grupo Sobrepeso (GSP=9); Grupo Controle (GC=21) foram avaliadas quanto às medidas antropométricas, teste de função pulmonar, exame das pressões respiratórias máxima e a pletismografia optoeletrônica em duas posturas, supino e sentado, durante a respiração tranquila. Resultados: As crianças que estão obesas apresentaram maiores valores em relação ao GSP e GC das seguintes variáveis espirométricas: volume expiratório forçado no primeiro segundo (VEF1) (p<0.05) e capacidade vital forçada (CVF) (p<0.01). No exame de manovacuometria o GO apresentou um aumento na pressão inspiratória máxima (PImáx) (p<0.01) em comparação com os outros grupos. Quanto à distribuição do volume corrente, o GO possui uma maior contribuição do compartimento abdominal (AB) na postura supina (p<0.05) em relação ao GC e GSP, enquanto que na postura sentada os grupos não diferiram em relação à distribuição dos volumes. O GO apresentou maior assincronia na postura supina (p<0.05) e maior velocidade de encurtamento (p<0.05) em relação os outros grupos. Conclusão: A obesidade em crianças/adolescentes não provoca prejuízos na função pulmonar, incrementa a força muscular inspiratória, aumenta a participação do compartimento AB e a assincronia no MTA na postura em supino, conclui-se que a postura supina associada à obesidade provoca aumento da sobrecarga do diafragma, desfavorecendo o desempenho do sistema respiratório.
Resumo:
The plant metabolism consists of a complex network of physical and chemical events resulting in photosynthesis, respiration, synthesis and degradation of organic compounds. This is only possible due to the different kinds of responses to many environmental variations that a plant could be subject through evolution, leading also to conquering new surroundings. The glyoxylate cycle is a metabolic pathway found in glyoxysomes plant, which has unique role in the seedling establishment. Considered as a variation of the citric acid cycle, it uses an acetyl coenzyme A molecule, derived from lipids beta-oxidation to synthesize compounds which are used in carbohydrate synthesis. The Malate synthase (MLS) and Isocitrate lyase (ICL) enzyme of this cycle are unique and essential in regulating the biosynthesis of carbohydrates. Because of the absence of decarboxylation steps as rate-limiting steps, detailed studies of molecular phylogeny and evolution of these proteins enables the elucidation of the effects of this route presence in the evolutionary processes involved in their distribution across the genome from different plant species. Therefore, the aim of this study was to establish a relationship between the molecular evolution of the characteristics of enzymes from the glyoxylate cycle (isocitrate lyase and malate synthase) and their molecular phylogeny, among green plants (Viridiplantae). For this, amino acid and nucleotide sequences were used, from online repositories as UniProt and Genbank. Sequences were aligned and then subjected to an analysis of the best-fit substitution models. The phylogeny was rebuilt by distance methods (neighbor-joining) and discrete methods (maximum likelihood, maximum parsimony and Bayesian analysis). The identification of structural patterns in the evolution of the enzymes was made through homology modeling and structure prediction from protein sequences. Based on comparative analyzes of in silico models and from the results of phylogenetic inferences, both enzymes show significant structure conservation and their topologies in agreement with two processes of selection and specialization of the genes. Thus, confirming the relevance of new studies to elucidate the plant metabolism from an evolutionary perspective
Resumo:
The advancement of nanotechnology in the synthesis and characterisation of nanoparticles (NP's) has played an important role in the development of new technologies for various applications of nano-scale materials that have unique properties. The scientific development in the last decades in the field of nanotechnology has sought ceaselessly, the discovery of new materials for the most diverse applications, such as biomedical areas, chemical, optical, mechanical and textiles. The high bactericidal efficiency of metallic nanoparticles (Au and Ag), among other metals is well known, due to its ability to act in the DNA of fungi, viruses and bacteria, interrupting the process of cellular respiration, making them important means of study, in addition to its ability to protect UVA and UVB. The present work has as its main objective the implementation of an innovative method in the impregnation of nanoparticles of gold in textile substrate, functionalized with chitosan, by a dyeing process by exhaustion, with the control of temperature, time and velocity, thus obtaining microbial characteristics and UV protection. The exhausted substrates with colloidal solutions of NPAu's presented the colours, lilac and red (soybean knits) due to their surface plasmon peak around 520-540 nm. The NPAu's were synthesized chemically, using sodium citrate as a reducing agent and stabilizer. The material was previously cationised with chitosan, a natural polyelectrolyte, with the purpose of functionalising it to enhance the adsorption of colloid, at concentrations of 5, 7, 10 and 20 % of the bonding agent on the weight of the material (OWM). It was also observed, through an experimental design 23 , with 3 central points, which was the best process of exhaustion of the substrates, using the following factors: Time (min.), temperature (OC) and concentration of the colloid (%), having as a response to variable K/S (ABSORBÂNCIA/ Kubelka-Munk) of the fibres. Furthermore, it was evidenced as the best response, the following parameters: concentration 100%, temperature 70 ºC and time 30 minutes. The substrate with NPAu was characterised by XRD; thermal analysis using TGA; microstructural study using SEM/EDS and STEM, thus showing the NP on the surface of the substrate confirming the presence of the metal. The substrates showed higher washing fastness, antibacterial properties and UV radiation protection.
Resumo:
This study evaluated the spirometry and respiratory static pressures in 17 young women, twice a week for three successive ovulatory menstrual cycles to determine if such variables changed across the menstrual, follicular, periovulatory, early-tomid luteal and late luteal phases. The factors phases of menstrual cycle and individual cycles had no significant effect on the spirometry variables except for peak expiratory flow (PEF) and respiratory static pressures. Significant weak positive correlations were found between the progesterone:estradiol ratio and PEF and between estrogen and tidal volume (r = 0.37), inspiratory time (r = 0.22), expiratory time (r = 0.19), maximal inspiratory pressure (r = 0.25) and maximal expiratory pressure (r = 0.20) and for progesterone and maximal inspiratory pressure (r = 0.32) during the early-to-mid luteal phase. Although most parameters of the spirometry results did not change during the menstrual cycle, the correlations observed between sexual hormones and respiratory control variables suggest a positive influence of sexual female hormones controlling the thoracic pump muscles in the luteal phase