17 resultados para Oreochromis niloticus (Source: CAB)
Resumo:
Considering their commercial importance, as these are the species of freshwater fish more commercialized in Brazil, their occurence in different kinds of aquatic environments (lakes, rivers and dams) and for being tolerant to a wide range of variation of various physical parameters and chemical water, the fish species Oreochromis niloticus, Cyprinus carpio and Colossoma macropomum were chosen for this study, furthermore, to test the toxicity we used the herbicide Roundup. The fingerlings of tilapia (Oreochromis niloticus), commun carp (Cyprinus carpio) and tambaqui (Colossoma macropomum) were submitted to the herbicide roundup in the following concentrations: 0.0 (control); 18,06; 19,10; 20,14; 21,18 and 22,22 mg.L-1, 0.0 (control); 13,89; 14,86; 15,83; 16,81 and 17,78 mg.L-1, and 0.0 (control); 18,06; 19,10; 20,14; 21,18 and 22,22 mg.L-1, respectively, three for 96 hours. The LC50 - 96h for O. niloticus, C. carpio and C. macropomum was 21,63, 15,33 and 20,06 mg.L-1 of the herbicide roundup, respectively. The results show that this herbicide is classified as slightly toxic to the three species. The values of dissolved oxygen, pH and temperature recorded in the aquarium control and aquarium experimental of the three fish species have remained without significant variations during the tests, which reduces the possibility of death caused by sudden variations of these parameters during the 96 hours the experiment. The values of LC50 between different species of fish were observed, noting that the species O.niloticus, C. carpio and C. macropomum showed no expressive differences. The values of environmental risk of Roundup were calculated to obtain more stringent parameters in assessing the dangerousness of those on nontargets. The risk of environmental contamination by Roundup for the Nile tilapia, common carp, and tambaqui are low for the lowest application rate (1 L.ha-1) and depths (1.5 and 2.0 m). The dilution of 100%, the highest recommended dose (5 L.ha-1) and depths (1.5 and 2.0 m) the risk is moderate for the three species. The values of the Risk Ratio (QR) were greater than 0,1, indicating that the values of the CAE and LC50 are above acceptable levels and there is a need, this study, a refinement in ecotoxicological tests
Resumo:
The natural raw materials acquired special importance beside the mineral raw materials with the need for using alternative sources to oil, because they can be used to produce biopolymers. Gelatin, produced from the denaturation of collagen, and starch, an abundant polysaccharide in various plants, are examples of biopolymers which have several technological applications, especially in films. The objective of this work is to produce polymeric bioblends with gelatin and corn starch using two types of gelatin: commercial bovine gelatin and gelatin produced from mechanically separated flesh of tilapia (Oreochromis niloticus). For the extraction of tilapia gelatin 3 distinct pretreatments, followed by extraction in distilled water under heating were performed. The properties of gelatin extracted were similar to bovine gelatin, and the differences can be explained by the difference in extraction processes and sources. Blends of commercial gelatin and starch were produced in an internal mixer from a Haake torque rheometer, to study the behavior of the gelatin mixture with starch, thus, the same compositions were processed by twin screw extrusion, to define the mixing parameters. Subsequently, the extrusion of blends of tilapia gelatin and corn starch was carried out in the same twin screw extruder. The physico-chemical, rheological and morphological properties of the blends with thermoplastic starch and gelatin were studied. It was found that various properties vary linearly with increasing concentration of the components. The blends produced are immiscible, and among the two gelatins, tilapia gelatin showed a better interfacial adhesion with the corn starch. Regarding the morphology, gelatins formed the dispersed phase in all compositions studied, even in compositions rich in starch. Can be concluded that the procedure for tilapia gelatin extraction is feasible and advantageous, and the increasing in its scale to a reactor of 30 liters is possible, with a satisfactory yield. The bioblends of bovine gelatin/corn starch and tilapia gelatin/corn starch were successfully produced, and the processing conditions were appropriate