19 resultados para Minerais da série cobaltita-gersdorffita
Resumo:
This project was developed as a partnership between the Laboratory of Stratigraphical Analyses of the Geology Department of UFRN and the company Millennium Inorganic Chemicals Mineração Ltda. This company is located in the north end of the paraiban coast, in the municipal district of Mataraca. Millennium has as main prospected product, heavy minerals as ilmenita, rutilo and zircon presents in the sands of the dunes. These dunes are predominantly inactive, and overlap the superior portion of Barreiras Formation rocks. The mining happens with the use of a dredge that is emerged at an artificial lake on the dunes. This dredge removes sand dunes of the bottom lake (after it disassembles of the lake borders with water jets) and directs for the concentration plant, through piping where the minerals are then separate. The present work consisted in the acquisition external geometries of the dunes, where in the end a 3D Static Model could be set up of these sedimentary deposits with emphasis in the behavior of the structural top of Barreiras Formation rocks (inferior limit of the deposit). The knowledge of this surface is important in the phase of the plowing planning for the company, because a calculation mistake can do with that the dredge works too close of this limit, taking the risk that fragments can cause obstruction in the dredge generating a financial damage so much in the equipment repair as for the stopped days production. During the field stages (accomplished in 2006 and 2007) topographical techniques risings were used with Total Station and Geodesic GPS as well as shallow geophysical acquisitions with GPR (Ground Penetrating Radar). It was acquired almost 10,4km of topography and 10km of profiles GPR. The Geodesic GPS was used for the data geopositioning and topographical rising of a traverse line with 630m of extension in the stage of 2007. The GPR was shown a reliable method, ecologically clean, fast acquisition and with a low cost in relation to traditional methods as surveys. The main advantage of this equipment is obtain a continuous information to superior surface Barreiras Formation rocks. The static models 3D were elaborated starting from the obtained data being used two specific softwares for visualization 3D: GoCAD 2.0.8 and Datamine. The visualization 3D allows a better understanding of the Barreiras surface behavior as well as it makes possible the execution of several types of measurements, favoring like calculations and allowing that procedures used for mineral extraction is used with larger safety
Resumo:
This dissertation deals with the characterization, distribution and provenience of heavy minerals along the Piranhas-Açu River, from the City of Parelhas (Seridó River) to your mouth at the City of Macau-RN. Many heavy minerals species were recorded in this study: clinoamphibole, epidote (including zoisite), garnet, sillimanite, tourmaline, staurolite, andalusite, zircon, rutile, augite, ilmenite, hematite and magnetite. Major transparent minerals, those forming more than 5% of some assemblages, are hornblende, epidote, tourmaline, staurolite and zircon. Predominant opaque mineral is ilmenite. Six assemblages were identified along the river: (i) Garnet-hornblende-tourmaline with sillimanite, when cutting rocks of the Seridó Formation; (ii) Hornblende-garnet-zircon, when crossing rocks of the Caicó gnaisse-migmatitic Complex; (iii) Hornblende-zircon-epidote-staurolite, when draining rocks of the Jucurutu Formation; (iv) Hornblende-zircon-epidote, when cutting rocks of the Açu Formation; (v) Hornblende-zircon-staurolite, on the lowermost Açu River, when crossing limestones of the Jandaíra Formation and (vi) Zircon-tourmaline-staurolite in the Açu River mouth (Cenozoic rocks) where coastal process dominate. Mineral ratios that reflect differences in grain shape, density, and selective chemical decomposition were used in an attempt to isolate the effects of source and process as controls of mineral variability. Reworking of the sediments was regionally effective in selective sorting; the more equant minerals (e.g. epidote) and heavier minerals (e.g. opaques) had a higher probability of being selected for permanent deposition during reworking. The processes of selective decomposition stand out at the river mouth. A priori knowledge of provenance, associated with the assemblage distribution and effects of process were utilized to the interpretations, that points to the follow provenances: hornblende comes from micashists of the Seridó Formation, orthognaisses and amphibolites of the Caico Complex, paragnaisses and paranphibolites of the Jucurutu Formation and granites intrusions; epidote comes from paragnaisses and calciosilicatics of the Jucurutu Formation, granites intrusions (-Npy3al/ca and -Npy3mz, gravels deposits and Açu Formation; Andalusite and staurolite come from the Seridó Formation; Sillimanite, tourmaline and garnet come from micashists of the Seridó Formation, as well as from quartzites of the Equador Formation; Zircon comes from Precambrian rocks (pink and prismatic zircon) and from sediments of several cycles (round zircon); Opaques come from all rocks cutted for the Piranhas-Açu River; Rutile comes from metamorphic rocks, in general; Augite comes from the Ceará-Mirim, Serra do Cuó and Macau volcanisms. The texture of gravels deposits reveals a sediment transport mechanisms by traction-current processes, together with a diagenetic clay matrix suggests a hot-humid environments for deposition. The presence of unstable heavy minerals assemblages, as well as pebbles of different composition and degrees of rounding and esfericity, indicate more than one source. The occurrence of calcio/alkaline granites suites, in areas closed to the gravel deposits, suggests that these intrusions are the main source of sediments. This could explain for instance, the significant amounts of epidote and presence of unstable heavy minerals (e.g. hornblende). The analyses of heavy minerals also show significante variability between the modern (Piranhas-Açu) and ancestral (Açu Formation) river sediments. In general, these variations reflect relatively higher unstable and lower stable heavy minerals contents of the modern Piranhas-Açu sediments. The absence of significant compositional differences probably reflects uniform weathering conditions
Resumo:
The area studied is located on the north-easternmost portion of the Borborema Province, on the so-called São José de Campestre Massif, States of RN and PB, Northeast Brazil. Field relations and petrographic, geochemical and isotope data permitted the separation of five suites of plutonic rocks: alkali-feldspar granite (Caxexa Pluton), which constitutes the main subject of this dissertation, amphibole-biotite granite (Cabeçudo Pluton), biotite microgranite, gabbronorite to monzonite (Basic to Intermediate Suite) and aluminous granitoid. The Caxexa Pluton is laterally associated to the Remígio Pocinhos Shear Zone, with its emplacement along the mylonitic contact between the gneissic basement and the micashists. This pluton corresponds to a syntectonic intrusion elongated in the N-S direction, with about 50 km2 of outcropping surface. It is composed exclusively of alkali-feldspar granites, having clinopyroxene (aegirine-augite and hedenbergite), andradite-rich garnet, sphene and magnetite. It is classified geochemically as high silica rocks (>70 % wt), metaluminous to slightly peraluminous (normative corindon < 1%), with high total alkalis (>10% wt), Sr, iron number (#Fe=90-98) and agpaitic index (0.86-1.00), and positive europium anomaly. The Cabeçudo Pluton is composed of porphyritic rocks, commonly containing basic to intermediate magmatic enclaves often with mingling and mixing textures. Petrographically, it presents k-feldspar and plagioclase phenocrysts as the essential minerals, besides the accessories amphibole, biotite, sphene and magnetite. It is metaluminous and shows characteristics transitional between the calc-alkaline and alkaline series (or monzonitic subalkaline). Its REE content is greater than those ones of the Caxexa Pluton and biotite microgranite, and all spectra have negative europium anomalies. The biotite microgranites occur mainly on the central and eastern portion of the mapped area, as dykes and sheets with decimetric thickness, hosted principally in orthogneisses and micashists. Their field relationships as regards the Caxexa and Cabeçudo plutons suggested that they are late-tectonic intrusions. They are typically biotite granites, having also sphene, amphibole, allanite, opaques and zircon in the accessory assemblage. Geochemically they can be distinguished from the porphyritic types because the biotite microgranites are more evolved, peraluminous, and have more fractionated REE spectra. The Basic to Intermediate rocks form a volumetrically expressive elliptical, kilometric scale body on the Southeast, as well as sheets in micashists. They are classified as gabbronorites to monzonites, with the two pyroxenes and biotite, besides subordinated amounts of amphibole, sphene, ilmenite and allanite. These rocks do not show a well-defined geochemical trend, however they may possibly represent a monzonitic (shoshonitic) series. Their REE spectra have negative europium anomalies and REE contents greater than the other suites. The aluminous granitoids are volumetrically restricted, and have been observed in close association with migmatised micashists bordering the gabbronorite pluton. They are composed of almandine-rich garnet, andalusite, biotite and muscovite, and are akin to the peraluminous suites. Rb-Sr (whole rock) and Sm-Nd (whole-rock and mineral) isotopes furnished a minimum estimate of the crystallization (578±14 Ma) and the final resetting age of the Rb-Sr system (536±4 Ma) in the Caxexa Pluton. The aluminous granitoid has a Sm-Nd garnet age similar to that one of the Caxexa Pluton, that is 574±67 Ma. The strong interaction of shear bands and pegmatite dykes favoured the opening of the Rb-Sr system for the Caxexa Pluton and biotite microgranite. The amphibole-plagioclase geothermometer and the Al-in amphibole geobarometer indicate minimum conditions of 560°C and 7 kbar for the Cabeçudo Pluton, 730°C and 6 kbar for the microgranite and 743°C and 5 kbar for the basic to intermediate suite. The Zr saturation geothermometer reveals temperatures of respectively 855°C, 812°C and 957°C for those suites, whereas the Caxexa Pluton shows temperatures of around 757°C. The Caxexa, Cabeçudo and microgranites suites crystallized under high fO2 (presence of magnetite). On the other hand, the occurrence of ilmenite suggests less oxidant conditions in the basic to intermediate suite. Field relations demonstrate the intrusive character of the granitoids into a tectonically relatively stable continental crust. This is corroborated by petrographic and geochemical data, which suggest a late- or post-collisional tectonic context. It follows that the generation and emplacement of those granitoid suites is related to the latest events of the Brasiliano orogeny. Finally, the relationships between eNd (600 Ma), TDM (Nd) and initial Sr isotope ratio (ISr) do not permit to define the precise sources of the granitoids. Nevertheless, trace element modelling and isotopic comparisons suggest the participation of the metasomatised mantle in the generation of these suites, probably modified by different degrees of crustal contamination. In this way, a metasomatised mantle would not be a particular characteristic of the Neoproterozoic lithosphere, but a remarkable feature of this portion of the Borborema Province since Archaean and Paleoproterozoic times.
Resumo:
Cartographical representations (maps, charters and plans) are taken as didactic resources in Geography classes in the 5th grade of the municipal public schools in São José de Ribamar through a methodological approach taking into consideration the use of those resources is still worries an important part of the teachers of the Maranhão State public schools who teach in this level. Papers related to the theme, most of the time, are non accessible to the teachers of the maranhense public schools, mainly because the education instilutions, which use those resources, do it in a very incipient way. So this research proposes from the drawings of magnetccoursein the school courtyards, together with maps, charts, plans among others representation used in the classroom environment, motivate the students to a deeper interests in participating in Geography learning process in the 5th grade. Interviews, analyses of socialcultural questionnaires of the families involved in the process; observations of classes, trainings, geocartographical orientations, application of pre and posttests, discussions about the usage of cartographic representations, proposed and effectivated tasks in the classroom, as well as around the school, were the basis of the researched population. As a result of this process, it was produced a was complement didatical material showing, among others, the space in which students, for sure, will contribute in an effective way to a better teaching practice in the chain of maranhense public schools, having in mind that these geographic subjects may be taught in the level we focused our study