31 resultados para Microscopy atomic force


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The present work aims the preparation of filmes of strontium-doped lanthanum manganite (perovskita) yttria-stabilized zirconia (LSM-SDC) films deposited on substrate of YSZ by means of spin coating technique having as principal objective their application to solid oxide fuel cells of intermediate temperature. La0,8Sr0,2MnO3 and Ce0,8Sm0,2O1,9 were obtained by modified Pechini method by use of gelatin which act as polymerization agent. The powders obtained were characterized by Xray fluorescence, X ray diffraction, electronic scanning microscopy and the superficial area by BET method. The results obtained by X-ray fluorescence showed that the route adopted for obtention of powders was effective in the obtention of the compositions with close values to the stoichiometrics. Ethyl cellulose was used as pore-forming agent and mixed with the LSM-SDC powders in weight proportions of 1:24, 2:23 and 1:9. The films were sintered at 1150 °C for 4 h and characterized by X-ray diffraction and scanning electron microscopy technique (SEM) and atomic force. The phases quantification of the precursory powders and of the obtained films was carried through Rietveld method. According with the analysis of SEM, as the content of ethyl cellulose was increased, the pore distribution in films become more uniform and the pore size reduced. The methodology used for the obtention of the films was very efficient, considering a material was obtained with characteristics that were proper to the application as electrolyte/cathode system to solid oxide fuel cells

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we have developed a way to grow Fe/MgO(100) monocrystals by magnetron sputtering DC. We investigated the growing in a temperature range among 100 oC and 300 oC. Structural and magneto-crystalline properties were studied by different experimental techniques. Thickness and surface roughness of the films were investigated by atomic force microscopy, while magneto-crystalline properties were investigated by magneto-optical Kerr effect and ferromagnetic resonance. Our results show that as we increase the deposition temperature, the magneto-crystalline anisotropy of the films also increases, following the equation of Avrami. The best temperature value to make a film is 300 oC. As the main result, we built a base of magnetoresistence devices and as an aplication, we present measurements of Fe/Cr/Fe trilayer coupling. In a second work we investigated the temperature dependence of the first three interlayer spacings of Ag(100) surface using low energy electron diffraction. A linear expansion model of crystal surface was used and the values of Debye temperatures of the first two layers and thermal expansion coefficient were determinated. A relaxation of 1% was found for Ag(100) surface and these results are matched with faces (110) and (111) of the silver. iv

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Polyelectrolyte complexes (PECs) nanoparticles were prepared using chitosan and sodium polymethacrylate. The complex formation was investigated using turbidimetry, conductometry, viscometry, and dynamic light scattering. The presence of excess positive charges was evidenced by zeta potential measurements. The particle diameter was characterized by dynamic light scattering and the morphology by atomic force microscopy. In all experiments an abrupt change in behavior was observed at a carboxyl:amino molar ratio around 0.7−0.8. Those changes in behavior were related to a proposed mechanism of complex formation based on the decrease of macromolecular dimensions of soluble polyelectrolyte complex clusters, followed by phase segregation

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The plasma nitriding has been used in industrial and technological applications for large-scale show an improvement in the mechanical, tribological, among others. In order to solve problems arising in the conventional nitriding, for example, rings constraint (edge effect) techniques have been developed with different cathodes. In this work, we studied surfaces of commercially pure titanium (Grade II), modified by plasma nitriding treatment through different settings cathodes (hollow cathode, cathodic cage with a cage and cathodic cage with two cages) varying the temperature 350, 400 and 430oC, with the goal of obtaining a surface optimization for technological applications, evaluating which treatment generally showed better results under the substrate. The samples were characterized by the techniques of testing for Atomic Force Microscopy (AFM), Raman spectroscopy, microhardness, X-ray diffraction (XRD), and a macroscopic analysis. Thus, we were able to evaluate the processing properties, such as roughness, topography, the presence of interstitial elements, hardness, homogeneity, uniformity and thickness of the nitrided layer. It was observed that all samples were exposed to nitriding modified relative to the control sample (no treatment) thus having increased surface hardness, the presence of TiN observed by XRD as per both Raman and a significant change in the roughness of the treated samples . It was found that treatment in hollow cathode, despite having the lowest value of microhardness between treated samples, was presented the lowest surface roughness, although this configuration samples suffer greater physical aggressiveness of treatment

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to analyze the biological response of titanium surfaces modified by plasma Ar + N2 + H2. Titanium disks grade II received different surface treatments Ar + N2 + H2 plasma, constituting seven groups including only polished samples used as standard. Before and after treatment the samples were evaluated in terms of topography, crystal structure and wettability, using atomic force microscopy, X-ray diffraction, Raman spectroscopy and testing of the sessile drop, respectively. Rich plasma (PRP) was applied to the surfaces modified in culture plates. Images obtained by scanning electron microscopy of the adhered platelets were analyzed to verify the behavior of platelets in the different experimental conditions. We verified that the adition of H2 on plasma atmosphere resulted in more rough surfaces, with round tops. These surfaces, in contrast to that surfaces treated with high concentration of N2, are less propense to platelet aggregation and, consequently, to the formation of thrombus when applied in biomedical devices.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Ferroelectric ceramics with perovskite structure (ABO3) are widely used in solid state memories (FeRAM’s and DRAM's) as well as multilayered capacitors, especially as a thin films. When doped with zirconium ions, BaTiO3-based materials form a solid solution known as barium zirconate titanate (BaTi1-xZrxO3). Also called BZT, this material can undergo significant changes in their electrical properties for a small variation of zirconium content in the crystal lattice. The present work is the study of the effects of deposition parameters of BaTi0,75Zr0,25O3 thin films by spin-coating method on their morphology and physical properties, through an experimental design of the Box-Behnken type. The resin used in the process has been synthesized by the polymeric precursor method (Pechini) and subsequently split into three portions each of which has its viscosity adjusted to 10, 20 and 30 mPa∙s by means of a rotary viscometer. The resins were then deposited on Pt/Ti/SiO2/Si substrates by spin-coating method on 15 different combinations of viscosity, spin speed (3000, 5500 and 8000 rpm) and the number of deposited layers (5, 8 and 11 layers) and then calcined at 800 ° C for 1 h. The phase composition of the films was analyzed by X-ray diffraction (XRD) and indexed with the JCPDS 36-0019. Surface morphology and grain size were observed by atomic force microscopy (AFM) indicating uniform films and average grain size around 40 nm. Images of the cross section of the films were obtained by scanning electron microscopy field emission (SEM-FEG), indicating very uniform thicknesses ranging from 140-700 nm between samples. Capacitance measurements were performed at room temperature using an impedance analyzer. The films presented dielectric constant values of 55-305 at 100kHz and low dielectric loss. The design indicated no significant interaction effects between the deposition parameters on the thickness of the films. The response surface methodology enabled better observes the simultaneous effect of variables.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reported accidents involving the poisoning scorpions are still frequent in Brazil, mainly caused by Tityus serrulatus, known as yellow scorpion. Although antivenom sera are produced routinely by various government laboratories, the effectiveness of its use depends on how quickly treatment is initiated and efficiency in the production of antibodies by the immunized animals. In this study, the development of cationic polymeric nanoparticles of poly(lactic acid) aimed to create a modified delivery system for peptides and proteins of T. serrulatus venom, able to enhance the production of serum antibodies against the scorpion toxins. The cationic nanoparticles were obtained by a low energy nanoprecipitation, after study of the parameters’ variations effects over the physicochemical properties of the particles. The surface functionalization of the nanoparticles with the hyperbranched polyethyleneimine was proved by zeta potential analysis and enabled the adsorption by electrostatic interaction of different types of proteins. The protein loading efficiency of 40-80 % to bovine serum albumin (BSA) and 100 % to scorpion venom peptides evaluated by spectrophotometry and polyacrylamide gel electrophoresis confirmed the success of the selected parameters established for obtainment of nanoparticles, produced with size between 100 to 250 nm. The atomic force microscopy analysis and in vitro release showed that the spherical nanoparticles provided a sustained release profile of proteins by diffusion mechanism, demonstrating the potential for application of the nanoparticles in vivo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work reports the influence of the poly (ethylene terephthalate) textile and films surface modification by plasmas of O2 and mixtures (N2 + O2), on their physical and chemical properties. The plasma surface polymeric modification has been used for many researchs, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, the treatment was carried out in a vacuum chamber. Some parameters remained constant during all treatment, such as: Voltage 470 V; Pressure 1,250 Mbar; Current: 0, 10 A and gas flow: 10 cm3/min, using oxygen plasma alternating the treatment time 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) which was varied only the gas composition from 0 to 100% leaving the treatment time remaining constant to all treatment (10 min). The plasma treatment was characterized in-situ with Optics Emission Spectroscopy (OES), and the samples was characterized by contact angle, surface tension, Through Capillary tests, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, scanning electronic Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). The results showed that oxygen treated fabrics presented high wettability, due to the hydrophilic groups incorporation onto the surface formed through spputering of carbon atoms. For the nitrogen atmosphere, there is the a film deposition of amine groups. Treatment with small oxygen concentration in the mixture with nitrogen has a higher spputered species of the samples

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The technique of plasma nitriding by the cathode cage mainly stands out for its ability to produce uniform layers, even on parts with complex geometries. In this study, it was investigated the efficiency of this technique for obtaining duplex surface, when used, simultaneously, to nitriding treatment and thin film deposition at temperatures below 500°C. For this, were used samples of AISI 41 0 Martensitic Stainless Steel and performed plasma treatment, combining nitriding and deposition of thin films of Ti and/or TiN in a plasma atmosphere containing N2-H2. It was used a cathodic cage of titanium pure grade II, cylindrical with 70 mm diameter and 34 mm height. Samples were treated at temperature 420ºC for 2 and 12 hours in different working pressures. Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with micro-analysis by Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and analysis of Vickers Microhardness were used to investigate coating properties such as homogeneity and surface topography, chemical composition, layer thickness, crystalline phase, roughness and surface microhardness. The results showed there is a direct proportionality between the presence of H2 in plasma atmosphere and the quantity of titanium in surface chemical composition. It was also observed that the plasma treatment at lowpressure is more effective in formation of TiN thin film

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A polyester film has a vast application field, due some properties that are inherent of this kind of material such as, good mechanical resistance, chemical resistance to acids and bases and low production cost. However, this material has some limitations as low superficial tension, flat surface, low affinity to dyers, and poor adhesion which impede the use of the same ones for some finality as good wettability. Among the existent techniques to increase the superficial tension, plasma as energy source is the more promising technique, because of their versatility and for not polluting the environment. The plasma surface polymeric modification has been used for many researchers, because it does not affect the environment with toxic agents, the alterations remains only at nanometric layers and this technique shows expressive results. Then, due to its good acceptance, polyester films were treated with oxygen plasma varying the treatment time from 10 to 60 min with an increase of 10 min to each subsequent treatment. Also, the samples were treated with a gas mixture (nitrogen + oxygen) varying the percentage of each gas the mixture from 0 to 100%, the treatment time remaining constant to all treatments (10 min). After plasma treatment the samples were characterized by contact angle, surface tension, Raman spectroscopy, Infrared attenuated total reflection (IR-ATR) and atomic force microscopy, with the aim to study the wettability increase of treated polyester films as its variables. In the (O2/N2) plasma treatment of polyester films can be observed an increase of superficial roughness superior to those treated by O2 plasma. By the other hand, the chemical modification through the implantation of polar groups at the surface is obtained more easily using O2 plasma treatment

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chitosan is being studied for use as dressing due their biological properties. Aiming to expand the use in biomedical applications, chitosan membranes were modified by plasma using the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen (H2). The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), contact angle, surface energy and water absorption test. Biological Tests were also performed, such as: test sterilization and proliferation of fibroblasts (3T3 line). Through SEM we observed morphological changes occurring during the plasma treatment, the formation of micro and nano-sized valleys. MFA was used to analyze different roughness parameters (Ra, Rp, Rz) and surface topography. It was found that the treated samples had an increase in surface roughness and sharp peaks. Methane plasma treatment decreased the hydrophilicity of the membranes and also the rate of water absorption, while the other treatments turned the membranes hydrophilic. The sterilization was effective in all treatment times with the following gases: Ar, N2 and H2. With respect to proliferation, all treatments showed an improvement in cell proliferation increased in a range 150% to 250% compared to untreated membrane. The highlights were the treatments with Ar 60 min, O2 60 min, CH4 15 min. Observing the results of the analyzes performed in this study, it appears that there is no single parameter that influences cell proliferation, but rather a set of ideal conditions that favor cell proliferation