17 resultados para Lyapunov Exponent
Resumo:
Peng was the first to work with the Technical DFA (Detrended Fluctuation Analysis), a tool capable of detecting auto-long-range correlation in time series with non-stationary. In this study, the technique of DFA is used to obtain the Hurst exponent (H) profile of the electric neutron porosity of the 52 oil wells in Namorado Field, located in the Campos Basin -Brazil. The purpose is to know if the Hurst exponent can be used to characterize spatial distribution of wells. Thus, we verify that the wells that have close values of H are spatially close together. In this work we used the method of hierarchical clustering and non-hierarchical clustering method (the k-mean method). Then compare the two methods to see which of the two provides the best result. From this, was the parameter � (index neighborhood) which checks whether a data set generated by the k- average method, or at random, so in fact spatial patterns. High values of � indicate that the data are aggregated, while low values of � indicate that the data are scattered (no spatial correlation). Using the Monte Carlo method showed that combined data show a random distribution of � below the empirical value. So the empirical evidence of H obtained from 52 wells are grouped geographically. By passing the data of standard curves with the results obtained by the k-mean, confirming that it is effective to correlate well in spatial distribution
Resumo:
The diffusive epidemic process (PED) is a nonequilibrium stochastic model which, exhibits a phase trnasition to an absorbing state. In the model, healthy (A) and sick (B) individuals diffuse on a lattice with diffusion constants DA and DB, respectively. According to a Wilson renormalization calculation, the system presents a first-order phase transition, for the case DA > DB. Several researches performed simulation works for test this is conjecture, but it was not possible to observe this first-order phase transition. The explanation given was that we needed to perform simulation to higher dimensions. In this work had the motivation to investigate the critical behavior of a diffusive epidemic propagation with Lévy interaction(PEDL), in one-dimension. The Lévy distribution has the interaction of diffusion of all sizes taking the one-dimensional system for a higher-dimensional. We try to explain this is controversy that remains unresolved, for the case DA > DB. For this work, we use the Monte Carlo Method with resuscitation. This is method is to add a sick individual in the system when the order parameter (sick density) go to zero. We apply a finite size scalling for estimates the critical point and the exponent critical =, e z, for the case DA > DB