20 resultados para Iron foundries Production control Mathematical models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The determination of the rheology of drilling fluids is of fundamental importance to select the best composition and the best treatment to be applied in these fluids. This work presents a study of the rheological behavior of some addictives used as viscosifiers in water-based drilling fluids. The evaluated addictives were: Carboxymethylcellulose (CMC), Xanthan gum (GX), and Bentonite. The main objective was to rheologically characterize suspensions composed by these addictives, by applying mathematical models for fluid flow behavior, in order to determine the best flow equation to represent the system, as well as the model parameters. The mathematical models applied in this research were: the Bingham Model, the Ostwald de Wale Model, and the Herschel-Bulkley Model. A previous study of hydration time for each used addictive was accomplished seeking to evaluate the effect of polymer and clay hydration on rheological behavior of the fluid. The rheological characterization was made through typical rheology experiments, using a coaxial cylinder viscosimeter, where the flow curves and the thixotropic magnitude of each fluid was obtained. For each used addictive the rheological behavior as a function of temperature was also evaluated as well as fluid stability as a function of the concentration and kind of addictive used. After analyses of results, mixtures of polymer and clay were made seeking to evaluate the rheological modifications provided by the polymer incorporation in the water + bentonite system. The obtained results showed that the Ostwald de Waale model provided the best fit for fluids prepared using CMC and for fluids with Xanthan gum and Bentonite the best fit was given by the Herschel-Bulkley one

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental sustainability has become one of the topics of greatest interest in industry, mainly due to effluent generation. Phenols are found in many industries effluents, these industries might be refineries, coal processing, pharmaceutical, plastics, paints and paper and pulp industries. Because phenolic compounds are toxic to humans and aquatic organisms, Federal Resolution CONAMA No. 430 of 13.05.2011 limits the maximum content of phenols, in 0.5 mg.L-1, for release in freshwater bodies. In the effluents treatment, the liquid-liquid extraction process is the most economical for the phenol recovery, because consumes little energy, but in most cases implements an organic solvent, and the use of it can cause some environmental problems due to the high toxicity of this compound. Because of this, exists a need for new methodologies, which aims to replace these solvents for biodegradable ones. Some literature studies demonstrate the feasibility of phenolic compounds removing from aqueous effluents, by biodegradable solvents. In this extraction kind called "Cloud Point Extraction" is used a nonionic surfactant as extracting agent of phenolic compounds. In order to optimize the phenol extraction process, this paper studies the mathematical modeling and optimization of extraction parameters and investigates the effect of the independent variables in the process. A 32 full factorial design has been done with operating temperature and surfactant concentration as independent variables and, parameters extraction: Volumetric fraction of coacervate phase, surfactant and residual concentration of phenol in dilute phase after separation phase and phenol extraction efficiency, as dependent variables. To achieve the objectives presented before, the work was carried out in five steps: (i) selection of some literature data, (ii) use of Box-Behnken model to find out mathematical models that describes the process of phenol extraction, (iii) Data analysis were performed using STATISTICA 7.0 and the analysis of variance was used to assess the model significance and prediction (iv) models optimization using the response surface method (v) Mathematical models validation using additional measures, from samples different from the ones used to construct the model. The results showed that the mathematical models found are able to calculate the effect of the surfactant concentration and the operating temperature in each extraction parameter studied, respecting the boundaries used. The models optimization allowed the achievement of consistent and applicable results in a simple and quick way leading to high efficiency in process operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study were projected, built and tested an electric solar dryer consisting of a solar collector, a drying chamber, an exhaust fan and a fan to promote forced hot air convection. Banana drying experiments were also carried out in a static column dryer to model the drying and to obtain parameters that can be used as a first approximation in the modeling of an electric solar dryer, depending on the similarity of the experimental conditions between the two drying systems. From the banana drying experiments conducted in the static column dryer, we obtained food weight data as a function of aqueous concentration and temperature. Simplified mathematical models of the banana drying were made, based on Fick s and Fourier s second equations, which were tested with the experimental data. We determined and/or modeled parameters such as banana moisture content, density, thin layer drying curves, equilibrium moisture content, molecular diffusivity of the water in banana DAB, external mass transfer coefficient kM, specific heat Cp, thermal conductivity k, latent heat of water evaporation in the food Lfood, time to heat food, and minimum energy and power required to heat the food and evaporate the water. When we considered the shrinkage of radius R of a banana, the calculated values of DAB and kM generally better represent the phenomenon of water diffusion in a solid. The latent heat of water evaporation in the food Lfood calculated by modeling is higher than the latent heat of pure water evaporation Lwater. The values calculated for DAB and KM that best represent the drying were obtained with the analytical model of the present paper. These values had good agreement with those assessed with a numeric model described in the literature, in which convective boundary condition and food shrinkage are considered. Using parameters such as Cp, DAB, k, kM and Lfood, one can elaborate the preliminary dryer project and calculate the economy using only solar energy rather than using solar energy along with electrical energy

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Circadian rhythms are variations in physiological processes that help living beings to adapt to environmental cycles. These rhythms are generated and are synchronized to the dark light cycle through the suprachiasmatic nucleus. The integrity of circadian rhythmicity has great implication on human health. Currently it is known that disturbances in circadian rhythms are related to some problems of today such as obesity, propensity for certain types of cancer and mental disorders for example. The circadian rhythmicity can be studied through experiments with animal models and in humans directly. In this work we use computational models to gather experimental results from the literature and explain the results of our laboratory. Another focus of this study was to analyze data rhythms of activity and rest obtained experimentally. Here we made a review on the use of variables used to analyze these data and finally propose an update on how to calculate these variables. Our models were able to reproduce the main experimental results in the literature and provided explanations for the results of experiments performed in our laboratory. The new variables used to analyze the rhythm of activity and rest in humans were more efficient to describe the fragmentation and synchronization of this rhythm. Therefore, the work contributed improving existing tools for the study of circadian rhythms in mammals

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As social animals, primates use different sensory modalities (acoustic, chemical, tactile and visual) to convey information about social and sexual status to conspecifics. Among these modalities, visual signals are widely used, especially color signals, since primates are the mammalian group that displays the greatest variety of colors in their skin and fur. Studies with Old World primate species suggest that hormonal variations are related to variations in the colors of individual faces and genitals. Therefore, chromatic cues can be used by conspecifics to identify the reproductive condition of an individual. To date, studies with the same approach are unknown for New World species. However, behavioral and physiological studies suggest that different New World primate species seem to perceive reproductive conditions such as the timing of female conception and gestation. Thus, in this study, our aim was to: i) identify whether there are chromatic cues on the skin of female common marmosets, (Callithrix jacchus) that indicate their reproductive condition; ii) define whether this chromatic variation can be perceived by all visual phenotypes known in this species; iii) identify if these chromatic cues can be perceived under different light intensity levels (dim, intermediate and high). For this, we selected 13 female common marmosets in four distinct reproductive conditions: pregnant female preceding parturition, postpartum mothers, noncycling and cycling females. The coloration of the skin in genital and thigh areas in females was measured using a spectrophotometer. Using mathematical models of visual perception, we calculated the values of quantum catch for each photoreceptor type known in this species, the visual opponency channels and color contrast between those body spots. Our results indicate the occurance of chromatic variations in the genital area during the weeks that precede and follow parturition, forming a U-pattern of variation perceptible to males and females in natural conditions of low and high luminosity. Furthermore, we observed distinct color patterns in the genital skin of pregnant and cycling females that indicate their reproductive conditions. Finally, we present evidence of color contrast in noncycling females that is higher than that of pregnant ones. This study suggests that there is a chromatic xii variation in the genital skin of females that can be perceived by conspecifics and that may be related to hormonal changes typical of pregnancy and the ovarian cycle