23 resultados para Ion current density


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, the treatment of wastewater from the textile industry, containing dyes as Yellow Novacron (YN), Red Remazol BR (RRB) and Blue Novacron CD (NB), and also, the treatment of wastewater from petrochemical industry (produced water) were investigated by anodic oxidation (OA) with platinum anodes supported on titanium (Ti/Pt) and boron-doped diamond (DDB). Definitely, one of the main parameters of this kind of treatment is the type of electrocatalytic material used, since the mechanisms and products of some anodic reactions depend on it. The OA of synthetic effluents containing with RRB, NB and YN were investigated in order to find the best conditions for the removal of color and organic content of the dye. According to the experimental results, the process of OA is suitable for decolorization of wastewaters containing these textile dyes due to electrocatalytic properties of DDB and Pt anodes. Removal of the organic load was more efficient at DDB, in all cases; where the dyes were degraded to aliphatic carboxylic acids at the end of the electrolysis. Energy requirements for the removal of color during OA of solutions of RRB, NB and YN depends mainly on the operating conditions, for example, RRB passes of 3.30 kWh m-3 at 20 mA cm-2 for 4.28 kWh m-3 at 60 mA cm-2 (pH = 1); 15.23 kWh m-3 at 20 mA cm-2 to 24.75 kWh m-3 at 60 mA cm-2 (pH 4.5); 10.80 kWh m-3 at 20 mA cm-2 to 31.5 kWh m-3 at 60 mA cm-2 (pH = 8) (estimated data for volume of treated effluent). On the other hand, in the study of OA of produced water effluent generated by petrochemical industry, galvanostatic electrolysis using DDB led to the complete removal of COD (98%), due to large amounts of hydroxyl radicals and peroxodisulphates generated from the oxidation of water and sulfates in solution, respectively. Thus, the rate of COD removal increases with increasing applied current density (15-60 mAcm-2 ). Moreover, at Pt electrode, approximately 50% removal of the organic load was achieved by applying from 15 to 30 mAcm-2 while 80% of COD removal was achieved for 60 mAcm-2 . Thus, the results obtained in the application of this technology were satisfactory depending on the electrocatalytic materials and operating conditions used for removal of organic load (petrochemical and textile effluents) as well as for the removal of color (in the case of textile effluents). Therefore, the applicability of electrochemical treatment can be considered as a new alternative like pretreatment or treatment of effluents derived from textiles and petrochemical industries.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposed the study of the treatment of a synthetic wastewater contaminated with BTX by electro-oxidation batch with the anode of Ti/PbO2, and the adsorption of BTX using expanded perlite as adsorbent material, and to evaluate the best operating conditions both methods in order to perform a sequential treatment (adsorption and electro-oxidation) and achieve greater efficiency in the removal of the compounds. The operating conditions were measured: temperature, current density and applied amount of the adsorbent material, by UV-VIS analysis and Demand Chemical oxygen demand (COD). According to the experimental results, the electro-oxidative treatment was efficient in the degradation of the compounds BTX (benzene, toluene and xylenes) in synthetic sewage due to the electrochemical properties of the anode of Ti/PbO2. The applied current density and temperature promoted increased efficiency of COD removal, reaching obtain percentages greater than 70%. In the adsorption process, the temperature increase was not a factor in the removal of organic matter, while the increase in the amount of adsorbent material led to an increase in the percentage removal, obtaining 66.30% using 2 g of adsorbent. The selected operating conditions of both treatments performed separately take into account the removal efficiency of organic matter, and the low energy consumption and operating costs, so the sequential treatment were satisfactory reaching 87.26% of COD removal using adsorption as a pretreatment. Quantification of BTX through the analysis of gas chromatography at the end of the treatments also confirmed the removal efficiency of organic compounds, giving outstanding advantages to sequential treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Textile industry has been a cause of environmental pollution, mainly due to the generation of large volumes of waste containing high organic loading and intense color. In this context, this study evaluated the electrochemical degradation of synthetic effluents from textile industry containing Methylene Blue (AM) dye, using Ti/IrO2-Ta2O5 and Ti/Pt anodes, by direct and indirect (active chlorine) electrooxidation. We evaluated the influence of applied current density (20, 40 and 60 mA/cm2 ), and the presence of different concentrations of electrolyte (NaCl and Na2SO4), as well as the neutral and alkaline pH media. The electrochemical treatment was conducted in a continuous flow reactor, in which the electrolysis time of the AM 100 ppm was 6 hours. The performance of electrochemical process was evaluated by UV-vis spectrophotometry, chemical oxygen demand (COD) and total organic carbon (TOC). The results showed that with increasing current density, it was possible to obtain 100 % of color removal at Ti/IrO2-Ta2O5 and Ti/Pt electrodes. Regarding the color removal efficiency, increasing the concentration of electrolyte promotes a higher percentage of removal using 0,02 M Na2SO4 and 0,017 M NaCl. Concerning to the aqueous medium, the best color removal results were obtained in alkaline medium using Ti/Pt. In terms of organic matter, 86 % was achieved in neutral pH medium for Ti/Pt; while a 30 % in an alkaline medium. To understand the electrochemical behavior due to the oxygen evolution reaction, polarization curves were registered, determining that the presence of NaCl in the solution favored the production of active chlorine species. The best results in energy consumption and cost were obtained by applying lower current density (20 mA/cm2 ) in 6 hours of electrolysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work was performing effluent degradation studies by electrochemical treatment. The electrochemical oxidation (EO) hydroquinone (H2Q) was carried out in acid medium, using PbO2 electrode by galvanostatic electrolysis, applying current densities of 10 and 30 mA/cm2 . The concentration of H2Q was monitored by differential pulse voltammetry (DPV). The experimental results showed that the galvanostatic electrolysis process performance significantly depends on the applied current density, achieving removal efficiencies of 100% and 80 % and 10 applying 30 mA/cm2 , respectively. Furthermore, the electroanalytical technique was effective in H2Q be used as a detection method. In order to test the efficiency of PbO2 electrode, the electrochemical treatment was conducted in an actual effluent, leachate from a landfill. The liquid waste leachate (600ml effluent) was treated in a batch electrochemical cell, with or without addition of NaCl by applying 7 mA/cm2 . The efficiency of EO was assessed against the removal of thermo-tolerant coliforms, total organic carbon (TOC), total phosphorus and metals (copper, cobalt, chromium, iron and nickel). These results showed that efficient removal of coliforms was obtained (100%), and was further decrease the concentration of heavy metals by the cathode processes. However, results were not satisfactory TOC, achieving low total removal of dissolved organic load. Because it is considered an effluent complex were developed other tests with this effluent to monitor a larger number of decontamination parameters (Turbidity, Total Solids, Color, Conductivity, Total Organic Carbon (TOC) and metals (barium, chromium, lithium, manganese and Zinc), comparing the efficiency of this type of electrochemical treatment (EO or electrocoagulation) using a flow cell. In this assay was compared to electro streaming. In the case of the OE, Ti/IrO2-TaO5 was used as the anode, however, the electrocoagulation process, aluminum electrodes were used; applying current densities of 10, 20 and 30 mA/cm2 in the presence and absence of NaCl as an electrolyte. The results showed that EO using Ti/IrO2–TaO5 was anode as efficient when Cl- was present in the effluent. In contrast, the electrocoagulation flow reduces the dissolved organic matter in the effluent, under certain experimental conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The textile effluents are a complex mixture of many pollutants that contain high organic loads, severe color and toxic compounds. The high concentration of the textile effluent may cause increased chemical demand (COD) and biochemical (BOD) of oxygen, elevated temperature, acidity or alkalinity, causing damage and environmental problems. In addition to representing a serious threat to human health such effluent is also quite toxic to most aquatic organisms. And for this reason, one must meet the concentration limits for emission sources and sewage system. This study aimed to investigate the performance of electrochemical treatment of a textile effluent for the removal of color, turbidity, dissolved oxygen (DO) and dissolved organic matter by investigating the influence of experimental parameters such as the electrocatalyst materials (Ti/Pt and Ti/Pt-SnSb) and current density in order to compare their efficiency, energy consumption and cost. The dye Novacron Blue CD (NB) was employed in synthetic solution, while the dyes Remazol Yellow 3RS (RY 3RS) Remazol Red RR Gran (RR-RR Gran) and Navy Blue CL-R (NB CL-R) were used to generate simulated textile effluent laboratory. The results showed that the application of electrochemical oxidation process favors the elimination of color effectively independent the electrocatalytic material and current used, as well as treated effluent. However, the influence of electrocatalytic material was crucial to reduction of the organic matter in all cases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hexavalent chromium is a heavy metal present in various industrial effluents, and depending on its concentration may cause irreparable damage to the environment and to humans. Facing this surrounding context, this study aimed on the application of electrochemical methods to determine and remove the hexavalent chromium (Cr6+) in simulated wastewater. To determine was applied to cathodic stripping voltammetry (CSV) using ultra trace graphite electrodes ultra trace (work), Ag/AgCl (reference) and platinum (counter electrode), the samples were complexed with 1,5- diphenylcarbazide and then subjected to analysis. The removal of Cr6+ was applied electrocoagulation process (EC) using Fe and Al electrodes. The variables that constituted the factorial design 24, applied to optimizing the EC process, were: current density (5 and 10 mA.cm-2), temperature (25 and 60 ºC), concentration (50 and 100 ppm) and agitation rate (400 and 600 RPM). Through the preliminary test it was possible the adequacy of applying the CSV for determining of Cr6+, removed during the EC process. The Fe and Al electrodes as anodes sacrifice showed satisfactory results in the EC process, however Fe favored complete removal in 30 min, whereas with Al occurred at 240 min. In the application of factorial design 24 and analysis of Response Surface Methodology was possible to optimize the EC process for removal of Cr6+ in H2SO4 solution (0.5 mol.L-1), in which the temperature, with positive effect, was the variable that presented higher statistical significance compared with other variables and interactions, while in optimizing the EC process for removal of Cr6+ in NaCl solution (0.1 mol.L-1) the current density, with positive effect, and concentration, with a negative effect were the variables that had greater statistical significance with greater statistical significance compared with other variables and interactions. The utilization of electrolytes supports NaCl and Na2SO4 showed no significant differences, however NaCl resulted in rapid improvement in Cr6+ removal kinetics and increasing the NaCl concentration provided an increase in conductivity of the solution, resulting in lower energy consumption. The wear of the electrodes evaluated in all the process of EC showed that the Al in H2SO4 solution (0.5 mol.L-1), undergoes during the process of anodization CE, then the experimental mass loss is less than the theoretical mass loss, however, the Fe in the same medium showed a loss of mass greater experimental estimated theoretically. This fact is due to a spontaneous reaction of Fe with H2SO4, and when the reaction medium was the NaCl and Na2SO4 loss experimental mass approached the theoretical mass loss. Furthermore, it was observed the energy consumption of all processes involved in this study had a low operating cost, thus enabling the application of the EC process for treating industrial effluents. The results were satisfactory, it was achieved complete removal of Cr6+ in all processes used in this study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The production of water has become one of the most important wastes in the petroleum industry, specifically in the up stream segment. The treatment of this kind of effluents is complex and normally requires high costs. In this context, the electrochemical treatment emerges as an alternative methodology for treating the wastewaters. It employs electrochemical reactions to increase the capability and efficiency of the traditional chemical treatments for associated produced water. The use of electrochemical reactors can be effective with small changes in traditional treatments, generally not representing a significant additional surface area for new equipments (due to the high cost of square meter on offshore platforms) and also it can use almost the same equipments, in continuous or batch flow, without others high costs investments. Electrochemical treatment causes low environmental impact, because the process uses electrons as reagent and generates small amount of wastes. In this work, it was studied two types of electrochemical reactors: eletroflocculation and eletroflotation, with the aim of removing of Cu2+, Zn2+, phenol and BTEX mixture of produced water. In eletroflocculation, an electrical potential was applied to an aqueous solution containing NaCl. For this, it was used iron electrodes, which promote the dissolution of metal ions, generating Fe2+ and gases which, in appropriate pH, promote also clotting-flocculation reactions, removing Cu2+ and Zn2+. In eletroflotation, a carbon steel cathode and a DSA type anode (Ti/TiO2-RuO2-SnO2) were used in a NaCl solution. It was applied an electrical current, producing strong oxidant agents as Cl2 and HOCl, increasing the degradation rate of BTEX and phenol. Under different flow rates, the Zn2+ was removed by electrodeposition or by ZnOH formation, due the increasing of pH during the reaction. To better understand the electrochemical process, a statistical protocol factor (22) with central point was conducted to analyze the sensitivity of operating parameters on removing Zn2+ by eletroflotation, confirming that the current density affected the process negatively and the flow rate positively. For economical viability of these two electrochemical treatments, the energy consumption was calculated, taking in account the kWh given by ANEEL. The treatment cost obtained were quite attractive in comparison with the current treatments used in Rio Grande do Norte state. In addition, it could still be reduced for the case of using other alternative energy source such as solar, wind or gas generated directly from the Petrochemical Plant or offshore platforms

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic liquids (ILs) are organic compounds liquid at room temperature, good electrical conductors, with the potential to form as a means for electrolyte on electrolysis of water, in which the electrodes would not be subjected to such extreme conditions demanding chemistry [1]. This paper describes the synthesis, characterization and study of the feasibility of ionic liquid ionic liquid 1-methyl-3(2,6-(S)-dimethyloct-2-ene)-imidazole tetrafluoroborate (MDI-BF4) as electrolyte to produce hydrogen through electrolysis of water. The MDI-BF4 synthesized was characterized by thermal methods of analysis (Thermogravimetric Analysis - TG and Differential Scanning Calorimetry - DSC), mid-infrared spectroscopy with Fourier transform by method of attenuated total reflectance (FTIR-ATR), nuclear magnetic resonance spectroscopy of hydrogen (NMR 1H) and cyclic voltammetry (CV). Where thermal methods were used to calculate the yield of the synthesis of MDI-BF4 which was 88.84%, characterized infrared spectroscopy functional groups of the compound and the binding B-F 1053 cm-1; the NMR 1H analyzed and compared with literature data defines the structure of MDI-BF4 and the current density achieved by MDI-BF4 in the voltammogram shows that the LI can conduct electrical current indicating that the MDI-BF4 is a good electrolyte, and that their behavior does not change with the increasing concentration of water