54 resultados para Injeção de solução polimérica e controle de mobilidade


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rheumatoid arthritis (RA) is systemic auto imune disorder. It is caracterized by chronic inflammation of joints leading to progressive erosion of cartilage and bone. We investigated the effect of the administration of fucoidan, sulfated polysaccharides, from algae Fucus vesiculosus in the acute (6h) in zymosan-induced arthritis (AZy). Wistar rats (180-230 g) were used for all groups experimental. Non-treated animals received just intraarticular injection of 1 mg the zymosan, control group received intraarticular injection of 50 µL the saline, groups received either fucoidan of Fucus vesiculosus (15, 30, 50 or 70 mg/Kg) or parecoxib (1 mg/Kg) 1 hour after injection of zymosan. After 6 h, the articular exudates were collected for evaluation of the cell influx and nitrite (Griess reaction) release. The sinovial membranes and articular cartilages were excised for histopathological analysis and by determination of the glycosaminoglycan (GAG), respectively. ZyA led to increased NO and cell influx into the joints. Therapeutic administration of the fucoidan or parecoxib did significantly inhibited the cell influx and the synovitis, as compared to non-treated rats (p<0,05), though being able to reduced NO release. Representative agarose gel electrophoresis of the GAGs, the content of condroitin-sulphate was observed during the process. These findings suggest that the fucoidan from Fucus vesiculosus has potential anti-inflammatory activity

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nickel-based catalysts supported on alumina have been widely used in various reactions to obtain synthesis gas or hydrogen. Usually, higher conversion levels are obtained by these catalysts, however, the deactivation by coke formation and sintering of metal particles are still problems to be solved. Several approaches have been employed in order to minimize these problems, among which stands out in recent years the use of additives such as oxides of alkali metals and rare earths. Similarly, the use of methodologies for the synthesis faster, easier, applicable on an industrial scale and to allow control of the microstructural characteristics of these catalysts, can together provide the solution to this problem. In this work, oxides with spinel type structure AB2O4, where A represents divalent cation and B represents trivalent cations are an important class of ceramic materials investigated worldwide in different fields of applications. The nickel cobaltite (NiCo2O4) was oxides of spinel type which has attracted considerable interest due to its applicability in several areas, such as chemical sensors, flat panel displays, optical limiters, electrode materials, pigments, electrocatalysis, electronic ceramics, among others. The catalyst precursor NiCo2O4 was prepared by a new chemical synthesis route using gelatine as directing agent. The polymer resin obtained was calcined at 350°C. The samples were calcined at different temperatures (550, 750 and 950°C) and characterized by X ray diffraction, measurements of specific surface area, temperature programmed reduction and scanning electron microscopy. The materials heat treated at 550 and 750°C were tested in the partial oxidation of methane. The set of techniques revealed, for solid preparations, the presence of the phase of spinel-type structure with the NiCo2O4 NixCo1-xO solid solution. This solid solution was identified by Rietveld refinement at all temperatures of heat treatment. The catalyst precursors calcined at 550 and 750°C showed conversion levels around 25 and 75%, respectively. The reason H2/CO was around 2 to the precursor treated at 750°C, proposed reason for the reaction of partial oxidation of methane, one can conclude that this material can be shown to produce synthesis gas suitable for use in the synthesis Fischer-Tropsch process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Portland-polymers composites are promising candidates to be used as cementing material in Northeastern oil wells of Brazil containing heavy oils submitted to steam injection. In this way, it is necessary to evaluate its degradation in the commonly acidizind agents. In addition, to identify how aggressive are the different hostile environments it is an important contribution on the decision of the acidic systems to be used in. It was investigated the performance of the Portland-polymer composites using powdered polyurethane, aqueous polyurethane, rubber tire residues and a biopolymer, those were reinforced with polished carbon steel SAE 1045 to make the electrochemical measurements. HCl 15,0 %, HCl 6,0 % + HF 1,5 % (soft mud acid), HCl 12,0 % + HF 3,0 % (regular mud acid) and HAc 10 % + HF 1,5 % were used as degrading environment and electrolytes. The more aggressive acid solution to the plain Portland hardened cement paste was the regular mud acid, that showed loss of weight around 23.0 %, followed by the soft mud acid, the showed 11.0 %, 15.0 % HCl with 7,0 % and, at last the 10.0 % HAc plus HF 1.5 % with just 1.0 %. The powdered polyurethane-composite and the aqueous polyurethane one showed larger durability, with reduction around 87.0 % on the loss of weight in regular mud acid. The acid attack is superficial and it occurs as an action layer, where the degraded layer is responsible for the decrease on the kinetic of the degrading process. This behavior can be seen mainly on the Portland- aqueous polyurethane composite, because the degraded layer is impregnated with chemically modified polymer. The fact of the acid attack does not have influence on the compressive strength or fratography of the samples, in a general way, confirms that theory. The mechanism of the efficiency of the Portland-polymers composites subjected to acid attack is due to decreased porosity and permeability related with the plain Portland paste, minor quantity of Ca+2, element preferentially leached to the acidic solution, wave effect and to substitute part of the degrading bulk for the polymeric one. The electrolyte HAc 10 % + HF 1,5 % was the least aggressive one to the external corrosion of the casing, showing open circuit potentials around +250 mV compared to -130 mV to the simulated pore solution to the first 24 hours immersion. This behavior has been performed for two months at least. Similar corrosion rates were showed between both of the electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and big polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirm its efficiency. In this way, Portlandpolymers composites are possible solutions to be succeed applied to oilwell cementing concomitant submitted to steam injection and acidizing operation and the HAc 10,0 % + HF 1,5 % is the less aggressive solution to the external corrosion of the casing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel cementing materials formulations containing flexible polymeric admixtures have been studied aiming at improving the mechanical behavior of oil well cement slurries submitted to steam injection. However, research activities in this sector are still under development. The steam injected directly into the well causes casing dilation, which after a reduction in temperature, tends to return to its original dimensions, resulting in crack formation and hydraulic isolation loss of the well, which will result in shortening of well life. In this scenario, the objective of the present study was to evaluate the mechanical behavior of Portland-based slurries containing SBR latex, applied in oil well cementing of wells submitted to steam injection. Were formulated slurries with densities of 1.797 g/cm3 (15.0 lb/Gal) and 1.869 g/cm3 (15.6 lb/Gal), containing admixtures with a latex concentration of 0; 66.88; 133.76; 200.64 and 267.52 L/m3 (0, 0.5, 1.0, 1.5 and 2.0 gpc). Tests including rheology, fluid loss control, thickening time, API compressive strength and splitting tensile strength, beyond steam injection simulation. Microstrutural characteristics of the slurries were also performed (XRD, TG, FTIR and SEM). The results showed that increasing the polymer concentration increased in the rheological properties and fluid loss, and a decrease in the elasticity modulus of the cement slurries. The results obtained showed that the slurries can be applied in cementing operations of oil wells submitted to steam injection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently the search for new materials with properties suitable for specific applications has increased the number of researches that aim to address market needs. The poly (methyl methacrylate) (PMMA) is one of the most important polymers of the family of polyacrylates and polymethacrylates, especially for its unique optical properties and weathering resistance, and exceptional hardness and gloss. The development of polymer composites by the addition of inorganic fillers to the PMMA matrix increases the potential use of this polymer in various fields of application. The most commonly used inorganic fillers are particles of silica (SiO2), modified clays, graphite and carbon nanotubes. The main objective of this work is the development of PMMA/SiO2 composites at different concentrations of SiO2, for new applications as engineering plastics. The composites were produced by extrusion of tubular film, and obtained via solution for application to commercial PMMA plates, and also by injection molding, for improved the abrasion and scratch resistance of PMMA without compromising transparency. The effects of the addition of silica particles in the polymer matrix properties were evaluated by the maximum tensile strength, hardness, abrasion and scratch resistance, in addition to preliminary characterization by torque rheometry and melt flow rate. The results indicated that it is possible to use silica particles in a PMMA matrix, and a higher silica concentration produced an increase of the abrasion and scratch resistance, hardness, and reduced tensile strength

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently a resource more and more used by the petroleum industry to increase the efficiency of steam flood mechanism is the addition of solvents. The process can be understood as a combination of a thermal method (steam injection) with a miscible method (solvent injection), promoting, thus, the reduction of interfacial tensions and oil viscosity. The use of solvent alone tends to be limited because of its high cost. When co-injected with steam, the vaporized solvent condenses in the cooler regions of the reservoir and mixes with the oil, creating a zone of low viscosity between the steam and the heavy oil. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method, a numerical study of the process was done contemplating the effects of some operational parameters (distance between wells, injection steam rate, kind of solvent and injected solvent volume)on the accumulated production of oil, recovery factor and oil-steam rate. Semisynthetic models were used in this study but reservoir data can be extrapolated for practical applications situations on Potiguar Basin. Simulations were performed in STARS (CMG, 2007.11). It was found that injected solvent volumes increased oil recovery and oil rates. Further the majority of the injected solvent was produced and can be recycled

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of heavy oil fields, typical in the Northeastern region, is commonly stimulated by steam injection. High bottom hole temperatures are responsible not only for the development of deleterious stresses of the cement sheath but also for cement strength retrogression. To overcome this unfavorable scenario, polymeric admixtures can be added to cement slurries to improve its fracture energy and silica flour to prevent strength retrogression. Therefore, the objective of the present study was to investigate the effect of the addition of different concentrations of polyurethane (5-25%) to cement slurries containing 40% BWOC silica flour. The resulting slurries were characterized using standard API (American Petroleum Institute) laboratory tests. In addition to them, the mechanical properties of the slurries, including elastic modulus and microhardness were also evaluated. The results revealed that density, free water and stability of the composite cement/silica/polyurethane slurries were within acceptable limits. The rheological behavior of the slurries, including plastic viscosity, yield strength and gel strength increased with the addition of 10% BWOC polyurethane. The presence of polyurethane reduced the fluid loss of the slurries as well as their elastic modulus. Composite slurries also depicted longer setting times due to the presence of the polymer. As expected, both the mechanical strength and microhardness of the slurries decreased with the addition of polyurethane. However, at high bottom hole temperatures, the strength of the slurries containing silica and polyurethane was far superior than that of plain cement slurries. In summary, the use of polyurethane combined with silica is an interesting solution to better adequate the mechanical behavior of cement slurries to heavy oil fields subjected to steam injection

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Brazilian Northeast there are reservoirs with heavy oil, which use steam flooding as a recovery method. This process allows to reduce oil viscosity, increasing its mobility and consequently its oil recovery. Steam injection is a thermal method and can occurs in continues or cyclic form. Cyclic steam stimulation (CSS) can be repeated several times. Each cycle consisting of three stages: steam injection, soaking time and production phase. CSS becomes less efficient with an increase of number of cycles. Thus, this work aims to study the influence of compositional models in cyclic steam injection and the effects of some parameters, such like: flow injection, steam quality and temperature of steam injected, analyzing the influence of pseudocomponents numbers on oil rate, cumulative oil, oil recovery and simulation time. In the situations analyzed was compared the model of fluid of three phases and three components known as Blackoil . Simulations were done using commercial software (CMG), it was analyzed a homogeneous reservoir with characteristics similar to those found in Brazilian Northeast. It was observed that an increase of components number, increase the time spent in simulation. As for analyzed parameters, it appears that the steam rate, and steam quality has influence on cumulative oil and oil recovery. The number of components did not a lot influenced on oil recovery, however it has influenced on gas production

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimulation operations have with main objective restore or improve the productivity or injectivity rate in wells. Acidizing is one of the most important operations of well stimulation, consist in inject acid solutions in the formation under fracture formation pressure. Acidizing have like main purpose remove near wellbore damage, caused by drilling or workover operations, can be use in sandstones and in carbonate formations. A critical step in acidizing operation is the control of acid-formation reaction. The high kinetic rate of this reaction, promotes the consumed of the acid in region near well, causing that the acid treatment not achive the desired distance. In this way, the damage zone can not be bypassed. The main objective of this work was obtain stable systems resistant to the different conditions found in field application, evaluate the kinetic of calcite dissolution in microemulsion systems and simulate the injection of this systems by performing experiments in plugs. The systems were obtained from two non ionic surfactants, Unitol L90 and Renex 110, with sec-butanol and n-butanol like cosurfactants. The oily component of the microemlsion was xilene and kerosene. The acqueous component was a solution of HCl 15-26,1%. The results shown that the microemulsion systems obtained were stable to temperature until 100ºC, high calcium concentrations, salinity until 35000 ppm and HCl concentrations until 25%. The time for calcite dissolution in microemulsion media was 14 times slower than in aqueous HCl 15%. The simulation in plugs showed that microemulsion systems promote a distributed flux and promoted longer channels. The permeability enhancement was between 177 - 890%. The results showed that the microemulsion systems obtained have potential to be applied in matrix acidizing

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of the thermal recovery is to heat the resevoir and the oil in it to increase its recovery. In the Potiguar river basin there are located several heavy oil reservoirs whose primary recovery energy provides us with a little oil flow, which makes these reservoirs great candidates for application of a method of recovery advanced of the oil, especially the thermal. The steam injection can occur on a cyclical or continuous manner. The continuous steam injection occurs through injection wells, which in its vicinity form a zone of steam that expands itself, having as a consequence the displace of the oil with viscosity and mobility improved towards the producing wells. Another possible mechanism of displacement of oil in reservoirs subjected to continuous injection of steam is the distillation of oil by steam, which at high temperatures; their lighter fractions can be vaporized by changing the composition of the oil produced, of the oil residual or to shatter in the amount of oil produced. In this context, this paper aims to study the influence of compositional models in the continuous injection of steam through in the analysis of some parameters such as flow injection steam and temperature of injection. Were made various leading comparative analysis taking the various models of fluid, varying from a good elementary, with 03 pseudocomponents to a modeling of fluids with increasing numbers of pseudocomponents. A commercial numerical simulator was used for the study from a homogeneous reservoir model with similar features to those found in northeastern Brazil. Some conclusions as the increasing of the simulation time with increasing number of pseudocomponents, the significant influence of flow injection on cumulative production of oil and little influence of the number of pseudocomponents in the flows and cumulative production of oil were found

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the decline of production from natural energy of the reservoir, the methods of enhanced oil recovery, which methods result from the application of special processes such as chemical injection, miscible gases, thermal and others can be applied. The advanced recovery method with alternating - CO2 injection WAG uses the injection of water and gas, normally miscible that will come in contact with the stock oil. In Brazil with the discovery of pre-salt layer that gas gained prominence. The amount of CO2 present in the oil produced in the pre-salt layer, as well as some reservoirs is one of the challenges to be overcome in relation to sustainable production once this gas needs to be processed in some way. Many targets for CO2 are proposed by researchers to describe some alternatives to the use of CO2 gas produced such as enhanced recovery, storage depleted fields, salt caverns storage and marketing of CO2 even in plants. The largest oil discoveries in Brazil have recently been made by Petrobras in the pre -salt layer located between the states of Santa Catarina and Espírito Santo, where he met large volumes of light oil with a density of approximately 28 ° API, low acidity and low sulfur content. This oil that has a large amount of dissolved CO2 and thus a pioneering solution for the fate of this gas comes with an advanced recovery. The objective of this research is to analyze which parameters had the greatest influence on the enhanced recovery process. The simulations were performed using the "GEM" module of the Computer Modelling Group, with the aim of studying the advanced recovery method in question. For this work, semi - synthetic models were used with reservoir and fluid data that can be extrapolated to practical situations in the Brazilian Northeast. The results showed the influence of the alternating injection of water and gas on the recovery factor and flow rate of oil production process, when compared to primary recovery and continuous water injection or continuous gas injection

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A significant fraction of the hydrocarbon reserves in the world is formed by heavy oils. From the thermal methods used to recovery these resources, Steamflooding has been one of the main economically viable alternatives. In Brazil, this technology is widely used by Petrobras in Northeast fields. Latent heat carried by steam heats the oil in the reservoir, reducing its viscosity and facilitating the production. In the last years, an alternative more and more used by the oil industry to increase the efficiency of this mechanism has been the addition of solvents. When co-injected with steam, the vaporized solvent condenses in the cooler regions of the reservoir and mixes with the oil, creating a low viscosity zone between the steam and the heavy oil. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method and investigate its applicability in reservoirs with properties similar to those found in Potiguar Basin, a numerical study was done to analyze the influence of some operational parameters (steam injection rate, injected solvent volume and solvent type) on oil recovery. Simulations were performed in STARS ("Steam, Thermal, and Advanced Processes Reservoir Simulator"), a CMG ("Computer Modelling Group") program, version 2009.10. It was found that solvents addition to the injected steam not only anticipated the heated oil bank arrival to the producer well, but also increased the oil recovery. Lower cold water equivalent volumes were required to achieve the same oil recoveries from the models that injected only steam. Furthermore, much of the injected solvent was produced with the oil from the reservoir

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing in the consumption of plant medicine by parts of the population generated a bigger need for studies. Drug substitutions, changes and adulterations at the production techniques are common places at plant-originated drugs trade, leading governmental departments of drug control round the world to adopt many analytical practices to medicinal plants. However, agronomic and technological issues cause characteristics and chemical composition variation at the drug, problem to be solved by the subject researchers. The present work aims to obtain a spray dried extract from a extractive solution obtained from Psidium guajava L. leaves based in book references that stress the intermediate dosage forms advantages. It also tries to validate useful methodologies for the quality control for both raw material and its derivates. Using eight sets of the spray dried extract (with Eudragit®, Aerosil ® e Avicel PH101 ® as drying adjuvants), the study proposes analytical methods using techniques commonly performed to plant medicines and its intermediate forms. As results, a viable spray-dried extract was obtained from a standartized extract solution. Among the studied adjuvants, the combination Aerosil ® with Eudragit ® showed the drying outcome, rheology, humidity and tannin content values that best fitted the demands of the Brazilian Pharmacopaea

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eventually, violations of voltage limits at buses or admissible loadings of transmission lines and/or power transformers may occur by the power system operation. If violations are detected in the supervision process, corrective measures may be carried out in order to eliminate them or to reduce their intensity. Loading restriction is an extreme solution and should only be adopted as the last control action. Previous researches have shown that it is possible to control constraints in electrical systems by changing the network topology, using the technique named Corrective Switching, which requires no additional costs. In previous works, the proposed calculations for verifying the ability of a switching variant in eliminating an overload in a specific branch were based on network reduction or heuristic analysis. The purpose of this work is to develop analytical derivation of linear equations to estimate current changes in a specific branch (due to switching measures) by means of few calculations. For bus-bar coupling, derivations will be based on short-circuit theory and Relief Function methodology. For bus-bar splitting, a Relief Function will be derived based on a technique of equivalent circuit. Although systems of linear equations are used to substantiate deductions, its formal solution for each variant, in real time does not become necessary. A priority list of promising variants is then assigned for final check by an exact load flow calculation and a transient analysis using ATP Alternative Transient Program. At last, results obtained by simulation in networks with different features will be presented