26 resultados para Hidrodinàmica
Resumo:
This study aimed to characterize, for the first time, the benthic invertebrates that inhabit the region of soft bottoms adjacent to the APARC reefs in order to situate them as an important component of infralittoral coastal areas of Northeast Brazil. Soft bottoms areas of APARC corresponds to infralittoral zones vegetated by seagrass Halodule wrightii and unvegetated infralittoral zones, both subjected to substantial hydrodynamic stress. Through scuba diving, biological and sedimentary samples of both habitats were analyzed, with a cylindrical sampler. We identified 6160 individuals belonging to 16 groups and 224 species. The most abundant macrofaunal group was Polychaeta (43%), followed by Mollusca (25%) and Crustacea (14%), what was expected for these environments. In the first chapter, regarding vegetated areas, we tested three hypotheses: the existence of differences in the faunal structure associated with H. wrightii banks submitted to different hydrodynamic conditions; the occurrence of minor temporal variations on the associated macrofauna of banks protected from hydrodynamic stress; and if the diversity of macrofauna is affected by both benthophagous predators and H. wrightii biomass. It was observed that macrofauna associated at the Exposed bank showed differences in structure when comparing the Protected bank, the granulometry of the sediments, that co-varies with the hydrodynamism, was the cause of these variations. The results also pointed to a lower temporal variation in the macrofaunal structure on the Protected bank and a negative relation between macrofaunal and benthophagous fish abundance. At the Exposed bank, a greater faunal diversity was observed, probably due to the higher seagrass biomass. The second chapter compares the vegetated and non-vegetated areas in order to test the hypothesis that due to greater seasonal stability in tropical environments, seagrass structure would act to distinguish the vegetated and non-vegetated areas macrofauna, over time. It was also expected that depositivores were the most representative invertebrates on non-vegetated environments, on the assumption that the seagrass bank would work as a source of debris to adjacent areas, enriching them. Considering all sampling periods, the total macrofauna abundance and diversity were higher in vegetated areas, when compared to non-vegetated ones. Seasonally, the structural complexity provided by Halodule differentiated more clearly the fauna from vegetated and non-vegetated areas, but only at the climatic extremes, i.e. Dry season (extreme climatic stability, with low hydronamism variation) and Rainy season (great hydrodynamism variation and probably vegetated bank burial). Furthermore, the high organic matter levels measured in the sandy banks coincided with an outstanding trophic importance of deposit feeders, proving the debris-carrying hypothesis. The last chapter focused on the non-vegetated areas, where we tested that the hypothesis infaunal halo in tropical reefs depending on local granulometry. In this context, we also tested the hypothesis that benthophagous fish predation would have an effect on the low abundance of macrofaunal groups due to the high hydrographic stress, thus allowing other predatory groups to have greater importance in these environments. Proving the hypothesis, no spatial variation, both on abundance families neither on community structure, occur along distance of the edge reefs. However, we found that complex combinations of physical factors (grain size and organic matter levels originated from local hydronamic conditions) covary with the distance from the reefs and has stronger influence on macrofauna than considered biological factors, such as predation by benthophagous fishes. Based on the main results, this study shows that unconsolidated areas around APARC reefs are noteworthy from an ecological and conservational point of view, as evidenced by the biota-environment and organismal relations, never before described for these areas
Resumo:
The work concerns on the evolutionary study of the environmental conditions of the coastal area of Guamaré-RN, where was investigated the geo-environmental transformation occourred in this region, whose primordial purpose was to diagnose the changes verified in the temporary space of five decades (1950 to 2001). With the objective of evaluanting the action of the active coastal processes (currents, waves, tides and winds), in order to understand the generating mechanisms of the erosion/sedimentation, evidenced by constant morphologic changes. The adopted methodological procedure consisted of a succession of stages, involving bibliographical and cartographic study, aereal photographs study, digital treatment of images, field work (sample collection, beaches profiles, characterization of the beach environment and morfodynamics), mapping correction and laboratory analyses (granulometry). The evolutionary study of the morphologic features indicated significant variations in the studied period, mainly, in the dunes, sea terraces, variation of the shore line and tidal flat, evidencing the largest transformations in the temporary space between 1988 and 2001. The analyses of the beach profiles showed a sedimentation tendency in the area of the profiles P1, P2 and P3, however in the monitored pediod, it was observed in the referred profiles, erosive and depositionals intervals evidencing a need of more effective monitoring. The results of the granulometric analyses indicate a predominance of mean to coarse sand in the backshore and estirancy area, as in the shoreface, the analyses indicated medium to fine sand. The morfodynamic state, showed that beach of Minhoto is intermediate state, with alternancy to reflective. The areas of larger vulnerability and sensibility are the tidal flat, shore line, barrier island and mobile dunes, that actually is suffering great environmental impact with expansion of the carcinoculture, urban presence and natural impacts (erosion of the shoreline)
Resumo:
The study carried out in the environment of Maracajaú reef an São Roque channel, had as main objective to analyze the characteristics of sediments active locally expressed in the grains, through collections of sediments in the field, technical processing and data analyzes of sediments. Data processing were made on three main aspects: biotic composition, concentration of calcium carbonate and particle size of the sediment. Differences between the sediments of the reefs and channel were observed. It was emphasized the contribution of algae limestone in the production of carbonate, with some influence of foraminifera near the coast. The particle size distribution presented significant results for the understanding of locally sedimentary deposits. The results showed an environment of carbonate, with predominance of algae limestone, associated to unconsolidated sediments with gross granularity, besides the presence of rhodoliths in all samples.The fragmentation of biotic components and the prevalence of elliptical rhodoliths with little or no branch, indicate an environment of high energy hydrodynamics. This work is a further contribution to the understanding of sedimentology active locally in reef environments, in particular the of Maracajaú reef, by virtue of their complex ecosystem composed of a diversity of wild fauna and flora that still little studied in Brazil comparing to accelerated growth of teeth extractions and usufructs of natural resources causing often irreversible impacts to the environment
Resumo:
The Amapá State has an important natural lake system, known as The Amapá Lakes Region . Most of these lakes are on the southern part of Amapá s coastal plain, which has 300 km of extension and it s composed by holocenic sediments deposited at the northern part of Amazon River to the Orange Cape located on the northern part of Amapá state. This region is under influence of the Amazon River discharge which is the largest liquid discharge of about 209.000 m³/s and biggest sediment budget discharged on the ocean in the order 6.108 ton per day. The climate is influenced by the Intertropical Convergence Zone and El Niño Southern Oscillation which act mainly under precipitation, nebulosity, local rivers and tidal hidrology. In this region lake belts are Ocidental, Oriental and Meridional Lake Belts. The last one is formed by the by the lakes Comprido de Cima, Botos, Bacia, Lodão, Ventos, Mutuco and Comprido de Baixo. These lakes are the closest to the Araguari River and are characterized by pelitic sedimentation associated with fluvial and estuarine flood plains under influence of tides. The lakes are interconnected, suffer influence of flood pulses from the Tartarugal, Tartarugalzinho and Araguari rivers and the hydrodynamic and morphodynamic know edge is poor. Volume and area reduction, natural eutrophication, anthophic influence, hidrodynamic alterations, morphological changes and are factors which can contribute to the closing of such lakes on the Meridional Lake Belt. This belt is inside the boundaries of the Biological Reserve of Piratuba Lake, created in 1980 for integral protection. Due to the fragility of the environment together with the poor knowledge of the system and with the study area relevancy it is necessary to know the hydrodynamic and geoenvironmental processes. This work aims the characterization of morphodynamic and hydrodynamic processes in order to understand the geoambiental context of the Meridional Lake Belt, from the Comprido de Baixo Lake to the dos Ventos Lake, including the Tabaco Igarape. Methodology was based on the hydrodynamic data acquisition: liquid discharge (acoustic method), tides, bathymetry and the interpretation of multitemporal remote sensing images, integrated in a Geographic Information System (GIS). By this method charts of the medium liquid discharges of Lake Mutuco and Tabacco Igarape the maximum velocity of flow were estimated in: 1.1 m/s, 1.6 m/s and 1.6 m/s (rainy season) and 0.6 m/s, 0.6 m/s and 0.7 m/s (dry period), the maximum flow in: 289 m³/s, 297 m³/s and 379 m³/s (rainy season) and 41 m³/s , 79 m³/s and 105 m³/s (dry period), respectively. From the interpretation of multitemporal satellite images, maps were developed together with the analysis of the lakes and Tobaco Igarape evolution from 1972 to 2008, and were classified according to the degree of balance in the area: stable areas, eutrophic areas, areas of gain, and eroded areas. Troughout analysis of the balance of areas, it was possible to quantify the volume of lake areas occupied by aquatic macrophytes. The study sought to understand the hydrodynamic and morphodynamic processes occurring in the region, contributing to the elucidation of the processes which cause and/or favor geoenvironmental changes in the region; all such information is fundamental to making the management of the area and further definition of parameters for environmental monitoring and contributing to the development of the management plan of the Biological Reserve of Lake Piratuba. The work activities is a part of the Project "Integration of Geological, geophysical and geochemical data to Paleogeographic rebuilding of Amazon Coast, from the Neogene to the Recent
Resumo:
The northern coast of Rio Grande do Norte State (RN) shows areas of Potiguar basin with high activity in petroleum industry. With the goal of avoiding and reducing the accident risks with oil it is necessary to understand the natural vulnerability, mapping natural resources and monitoring the oil spill. The use of computational tools for environmental monitoring makes possible better analyses and decisions in political management of environmental preservation. This work shows a methodology for monitoring of environment impacts, with purpose of avoiding and preserving the sensible areas in oil contact. That methodology consists in developing and embedding an integrated computational system. Such system is composed by a Spatial Decision Support System (SDSS). The SDSS shows a computational infrastructure composed by Web System of Geo-Environmental and Geographic Information - SWIGG , the System of Environmental Sensibility Maps for Oil Spill AutoMSA , and the Basic System of Environmental Hydrodynamic ( SisBAHIA a System of Modeling and Numerical Simulating SMNS). In a scenario of oil spill occurred coastwise of Rio Grande do Norte State s northern coast, the integration of such systems will give support to decision agents for managing of environmental impacts. Such support is supplied through a system of supporting to spatial decisions
Resumo:
Issues concerning coastal regions, especially the beaches have sparked quite complex because studies are there that most people in the world has secured housing, mainly from the half of the last century, without concern for the natural dynamics of these environments, which have complex interactions of continental and oceanic, coastal responsible for changes in locations that can be perceived in a few years and sometimes even a few days or hours. The search took as main goal, analyze the Genipabu Beach, in the municipality of Extremoz/RN, fragile environment and rapid momentum, which has been occupied in a disorderly and unplanned. Carried out a beach monitoring through profiles beach environments: defined stages morphodynamics; realization of characterize hydrodynamic processes; identification of changes in the landscape. To this end, made necessary a survey from the bibliographic collection for theoretical and conceptual rationale. An empirical step for conducting the environmental characterization of hydrodynamics, leveling and topographic analysis of sediments (in laboratory), for observation of changes in features, influenced, and natural dynamics, anthropic action that increasingly comes taking the characteristics from the natural landscape. Underlines therefore the importance of academic studies in several areas in these environments, for setting up a coastal zoning giving public subsidies for managers for managing and planning the use and occupation of the coast in their areas
Resumo:
This dissertation includes the monitoring of coastal environmental dynamics at three points distinct from Ponta Negra beach, located on the South Coast of Natal, capital of Rio Grande do Norte, in the period June 2012 to May, 2013. For this, the following hypotheses were developed: Which actors morphodynamic and/or anthropogenic responsible for the changes in the study area? And yet, the configuration of the morphodynamic state of the beach, dissipative, reflective or intermediate? Faced with these questions , studies on the beach environment has its relevance as they may clarify the risks and responsibilities of anthropogenic intervention and also assist managers in more targeted action regarding the protection of praiais systems, since once committed, it is very difficult recover the environmental framework of the area, being greatly more feasible the development of multidisciplinary work plans that can guide human actions possible in search of an understanding to the harmonious interaction between society and the beach system. Its main goal is the understanding of the processes of coastal dynamics, methodological procedures that supported the implementation of this research were based on the object of study related literature associated with the collection of data resulting from beach profiles made monthly in spring tides (full moon), the hydrodynamic data and statistical quantification data (%) and size classification of sediment sediment after laboratory analysis. The results obtained from annual comparative tables of beach profiles, associated sedimentological analysis, indicated a positive sediment budget, tending to equilibrium for Point 01 and Point 02 negative. Have to Step 03 were added to the hydrodynamic data, which allowed also on a comparative framework, the perception of a depositional dynamics, with a tendency to decrease the accumulation of material at the end of the annual cycle. These data also allowed for the point 03, the calculation of the volume of material transported by the longshore current was around 104.280 m³/m, plus the Dean parameter which established a morphological state of the dissipative beach with specific prevalences for point 03. Thus, given the results presented in this work in a timely monitoring of coastal dynamics is expected that managers and public authorities can articulate multidisciplinary work plans, always aiming actions that seek understanding and effective commitment to the recovery of the harmonious interaction between society and Ponta Negra beach environment
Resumo:
Einstein’s equations with negative cosmological constant possess the so-called anti de Sitter space, AdSd+1, as one of its solutions. We will later refer to this space as to the "bulk". The holographic principle states that quantum gravity in the AdSd+1 space can be encoded by a d−dimensional quantum field theory on the boundary of AdSd+1 space, invariant under conformal transformations, a CFTd. In the most famous example, the precise statement is the duality of the type IIB string theory in the space AdS5 × S 5 and the 4−dimensional N = 4 supersymmetric Yang-Mills theory. Another example is provided by a relation between Einstein’s equations in the bulk and hydrodynamic equations describing the effective theory on the boundary, the so-called fluid/gravity correspondence. An extension of the "AdS/CFT duality"for the CFT’s with boundary was proposed by Takayanagi, which was dubbed the AdS/BCFT correspondence. The boundary of a CFT extends to the bulk and restricts a region of the AdSd+1. Neumann conditions imposed on the extension of the boundary yield a dynamic equation that determines the shape of the extension. From the perspective of fluid/gravity correspondence, the shape of the Neumann boundary, and the geometry of the bulk is sourced by the energy-momentum tensor Tµν of a fluid residing on this boundary. Clarifying the relation of the Takayanagi’s proposal to the fluid/gravity correspondence, we will study the consistence of the AdS/BCFT with finite temperature CFT’s, or equivalently black hole geometries in the bulk.
Resumo:
The longshore sediment transport (LST) is determinant for the occurrence of morphological changes in coastal environments. Understanding their movement mechanisms and transport is an essential source of information for the project design and coastal management plans. This study aims to characterize, initially, the active hydrodynamic circulation in the study area, comprised of four beach sectors from the south coast of Natal, assessing the average annual LST obtained through three proven equations (CERC, Kamphuis and Bayram et al.), defining the best formulation for the study area in question, and analyze the seasonal variability and the decadal transport evolution. The coastal area selected for this work constitutes one of the main tourist corridors in the city, but has suffered serious damage resulting from associated effects of hydrodynamic forcings and their disorderly occupation. As a tool was used the Coastal Modelling System of Brazil (SMC-Brazil), which presents integrated a series of numerical models and a database, properly calibrated and validated for use in developing projects along the Brazilian coastline. The LST rates were obtained for 15 beach profiles distributed throughout the study area. Their extensions take into account the depth of closure calculated by Harllermeier equation, and regarding the physical properties of the sediment, typical values of sandy beaches were adopted, except for the average diameter, which was calculated through an optimization algorithm based on equilibrium profile formulation proposed by Dean. Overall, the results showed an intensification of hydrodynamic forcings under extreme sea wave conditions, especially along the headlands exist in the region. Among the analyzed equations, Bayram et al. was the most suitable for this type of application, with a predominant transport in the south-north direction and the highest rates within the order of 700.000 m3 /year to 2.000.000 m3 /year. The seasonal analysis also indicated a longitudinal transport predominance in the south to north, with the highest rates associated with the fall and winter seasons. In these periods are observed erosive beach states, which indicate a direct relationship between the sediment dynamics and the occurrence of more energetic sea states. Regarding the decadal evolution of transportation, it was found a decrease in transport rate from the 50’s to the 70’s, followed by an increase until the 2000’s, coinciding with the beginning of urbanization process in some stretches of the studied coastline.
Resumo:
The Potengi River estuary has been affected by various anthropogenic factors over the years, as periodic dredging, industrial and domestic waste, traffic and other factors, causing various environmental disasters, including the notorious ecological accident in July 2007, which covered the municipalities of São Gonçalo do Amarante, Macaíba and Natal. Foraminifera serve as viable study tools in these environments; they are able to identify ecologically stressed environments, pointing out hydrographic changes and depositional environments in estuaries. The necessity to check the differences in environmental gradients in places anthropically impacted in Potengi River and adjacent inner shelf through species of foraminifera, and, the responses of these organisms to physical, chemical and geological factors is to provide baseline in the diagnosis of environments. The results show the dominance of opportunistic Ammonia tepida, Bolivina striatula, Quinqueloculina patagonica and Q. miletti especially in regions close to shrimp farms and Baldo Channel sewage in fine grain environments; and Q. lamarckiana indicates penetration of the saline waters in Potengi River. The occurrence of low-salinity tolerant foraminiferal species typical of mangrove environments as Trochammina inflata and T. squamata in Potengi River Channel suggest they probably could have been transported from mangrove area near the Potengi river mouth to the inner shelf regions. These findings suggest Potengi River is able to export mixohaline and mangrove organisms to inner shelf. Two distinct environments were observed, the outermost area is more influenced by marine influence and the innermost area is less influenced. Calcareous and agglutinated species dominate Potengi River, while mouth and inner shelf areas are dominated by calcareous, agglutinated and porcelaneous species, which are typical of highly saline and hydrodynamic environments and the contributive factors that controls foraminiferal distribution were balance of marine and freshwater currents, grain size, availability of CaCO3 and organic matter.
Resumo:
The Potengi River estuary has been affected by various anthropogenic factors over the years, as periodic dredging, industrial and domestic waste, traffic and other factors, causing various environmental disasters, including the notorious ecological accident in July 2007, which covered the municipalities of São Gonçalo do Amarante, Macaíba and Natal. Foraminifera serve as viable study tools in these environments; they are able to identify ecologically stressed environments, pointing out hydrographic changes and depositional environments in estuaries. The necessity to check the differences in environmental gradients in places anthropically impacted in Potengi River and adjacent inner shelf through species of foraminifera, and, the responses of these organisms to physical, chemical and geological factors is to provide baseline in the diagnosis of environments. The results show the dominance of opportunistic Ammonia tepida, Bolivina striatula, Quinqueloculina patagonica and Q. miletti especially in regions close to shrimp farms and Baldo Channel sewage in fine grain environments; and Q. lamarckiana indicates penetration of the saline waters in Potengi River. The occurrence of low-salinity tolerant foraminiferal species typical of mangrove environments as Trochammina inflata and T. squamata in Potengi River Channel suggest they probably could have been transported from mangrove area near the Potengi river mouth to the inner shelf regions. These findings suggest Potengi River is able to export mixohaline and mangrove organisms to inner shelf. Two distinct environments were observed, the outermost area is more influenced by marine influence and the innermost area is less influenced. Calcareous and agglutinated species dominate Potengi River, while mouth and inner shelf areas are dominated by calcareous, agglutinated and porcelaneous species, which are typical of highly saline and hydrodynamic environments and the contributive factors that controls foraminiferal distribution were balance of marine and freshwater currents, grain size, availability of CaCO3 and organic matter.