31 resultados para Hidratação enteral
Resumo:
Reservoirs that present highly viscous oils require methods to aid in their recovery to the surface. The elev ated oil viscosity hinders its flow through porous media and conventional recovery methods have not obtained significant efficiency. As such, the injection of steam into the reservoir through an injection well has been the most widely used method of therma l recovery, for it allows elevated volumes of recovery due to the viscosity reduction of the oil, facilitating the oil’s mobility within the rock formation and consequently into the production well where it will be exploited. On the other hand, the injecti on of vapor not only affects the fluids found in the rock pores, but the entire structure that composes the well where it is injected due to the high temperatures used in the process. This temperature increment is conducted to the cement, found in the annu lus, responsible for the isolation of the well and the well casing. Temperatures above 110 ̊C create new fazes rich in calcium in the cement matrix, resulting in the reduction of its permeability and the consequential phenomenon of mechanical resistance ret rogression. These alterations generate faults in the cement, reducing the well’s hydraulic isolation, creating insecurity in the operations in which the well will be submitted as well as the reduction of its economic life span. As a way of reducing this re trograde effect, this study has the objective of evaluating the incorporation of rice husk ash as a mineral additive substitute of silica flour , commercially utilized as a source of silica to reduce the CaO/SiO 2 ratio in the cement pastes submitted to high temperatures in thermal recovery. Cement pastes were formulated containing 20 and 30% levels of ash, apart from the basic paste (water + cement) and a reference paste (water + cement + 40% silica flour) for comparison purposes. The tests were executed th rough compression resistance tests, X - Ray diffraction (XRD) techniques, thermogravimetry (TG), scanning electron microscopy (SEM) and chemical anal ysis BY X - ray fluorescence (EDS) on the pastes submitted to cure at low temperatures (45 ̊C) for 28 days following a cure at 280 ̊C and a pressure of 2,000 PSI for 3 days, simulating vapor injection. The results obtained show that the paste containing 30% r ice shell ash is satisfactory, obtaining mechanical resistance desired and equivalent to that of the paste containing 40% silica flour, since the products obtained were hydrated with low CaO/SiO 2 ratio, like the Tobermorita and Xonotlita fases, proving its applicability in well subject to vapor injection.
Resumo:
Opuntia fícus - indica (L.) Mill is a cactacea presents in the Caatinga ecosystem and shows in its chemical c omposition flavonoids, galacturonic acid and sugars. Different hydroglicolic (EHG001 and EHG002) and hydroethanolic subsequently lyophilized (EHE001 and EHE002) extracts were developed. The EHE002 had his preliminary phytochemical composition investigated by thin layer chromatography (TLC) and we observed the predominance of flavonoids. Different formulations were prepared as emulsions with Sodium Polyacrylate (and) Hydrogenated Polydecene (and) Trideceth - 6 (Rapithix® A60), and Polyacrylamide (and) C13 - 14 I soparaffin (and) Laureth - 7 (Sepigel® 305), and gel with Sodium Polyacrylate (Rapithix® A100). The sensorial evaluation was conducted by check - all - that - apply method. There were no significant differences between the scores assigned to the formulations, howe ver, we noted a preference for those formulated with 1,5% of Rapithix® A100 and 3,0% of Sepigel® 305. These and the formulation with 3% Rapithix® A60 were tested for preliminary and accelerated stability. In accelerated stability study, samples were stored at different temperatures for 90 days. Organoleptic characteristics, the pH values and rheological behavior were assessed. T he emulsions formulated with 3,0% of Sepigel® 305 and 1,5% of Rapithix® A60 w ere stable with pseudoplastic and thixotropic behavior . The moisturizing clinical efficacy of the emulsions containing 3,0% of Sepigel® 305 containing 1 and 3% of EHG001 was performed using the capacitance method (Corneometer®) and transepidermal water lost – TEWL evaluation ( Tewameter®). The results showed t hat the formulation with 3% of EHG001 increased the skin moisturizing against the vehicle and the extractor solvent formulation after five hours. The formulations containing 1 and 3% of EHG001 increased skin barrier effect by reducing transepidermal water loss up to four hours after application.
Resumo:
Compatibility testing between a drilling fluid and a cement slurry is one of the steps before an operation of cementing oil wells. This test allows us to evaluate the main effects that contamination of these two fluids may cause the technological properties of a cement paste. The interactions between cement paste and drilling fluid, because its different chemical compositions, may affect the cement hydration reactions, damaging the cementing operation. Thus, we carried out the study of the compatibility of non-aqueous drilling fluid and a cement slurry additives. The preparation procedures of the non-aqueous drilling fluid, the cement paste and completion of compatibility testing were performed as set out by the oil industry standards. In the compatibility test is evaluated rheological properties, thickening time, stability and compressive strength of cement pastes. We also conducted analyzes of scanning electron microscopy and X-ray diffraction of the mixture obtained by the compatibility test to determine the microstructural changes in cement pastes. The compatibility test showed no visual changes in the properties of the cement paste, as phase separation. However, after the addition of nonaqueous drilling fluid to cement slurry there was an increased amount of plastic viscosity, the yield point and gel strength. Among the major causative factors can include: chemical reaction of the components present in the non-aqueous drilling fluid as the primary emulsifier, wetting agent and paraffin oil, with the chemical constituents of the cement. There was a reduction in the compressive strength of the cement paste after mixing with this drilling fluid. Thickening test showed that the oil wetting agent and high salinity of the non-aqueous fluid have accelerating action of the handle of the cement paste time. The stability of the cement paste is impaired to the extent that there is increased contamination of the cement slurry with the nonaqueous fluid. The X-ray diffraction identified the formation of portlandite and calcium silicate in contaminated samples. The scanning electron microscopy confirmed the development of the identified structures in the X-ray diffraction and also found the presence of wells in the cured cement paste. The latter, formed by the emulsion stability of the drilling fluid in the cement paste, corroborate the reduction of mechanical strength. The oil wetting agent component of the non-aqueous drilling fluid, the modified cement hydration processes, mainly affecting the setting time.
Resumo:
OBJECTIVE: To identify the inpatient maternal and neonatal factors associated to the weaning of very low birth weight (VLBW) infants. METHODS: One hundred nineteen VLBW (<1500 g) infants were monitored from July 2005 through August 2006, from birth to the first ambulatory visit after maternity discharge. This maternity unit uses the Kangaroo Method and the Baby Friendly Hospital Initiative. Out of 119 VLBW infants monitored until discharge, 88 (75%) returned to the facility, 22 (25%) were on exclusive breastfeeding (EB), and 66 (75%) were weaned (partial breastfeeding or formula feeding). RESULTS: Univariate analysis found an association between weaning and lower birth weight, longer stays in the neonatal intensive care unit (NICU), and longer hospitalization times, in addition to more prolonged enteral feeding and birth weight recovery period. Logistic regression showed length of NICU stay as being the main determinant of weaning. CONCLUSION: The negative repercussion on EB of an extended stay in the NICU is a significant challenge for health professionals to provide more adequate nutrition to VLBW infants.
Resumo:
OBJECTIVE: To identify the inpatient maternal and neonatal factors associated to the weaning of very low birth weight (VLBW) infants. METHODS: One hundred nineteen VLBW (<1500 g) infants were monitored from July 2005 through August 2006, from birth to the first ambulatory visit after maternity discharge. This maternity unit uses the Kangaroo Method and the Baby Friendly Hospital Initiative. Out of 119 VLBW infants monitored until discharge, 88 (75%) returned to the facility, 22 (25%) were on exclusive breastfeeding (EB), and 66 (75%) were weaned (partial breastfeeding or formula feeding). RESULTS: Univariate analysis found an association between weaning and lower birth weight, longer stays in the neonatal intensive care unit (NICU), and longer hospitalization times, in addition to more prolonged enteral feeding and birth weight recovery period. Logistic regression showed length of NICU stay as being the main determinant of weaning. CONCLUSION: The negative repercussion on EB of an extended stay in the NICU is a significant challenge for health professionals to provide more adequate nutrition to VLBW infants.
Resumo:
Cement pastes used in cementing oil wells operations are prepared according to the specific characteristics of each well. The physical properties requested for each folder formulation depend on the temperature and pressure of the well to be cemented. The rheological properties of the pulp are important control parameter for efficiency in transportation and positioning the folder during the cementing operation. One of the main types of additive used for the adjustment of rheological properties of cement pastes is the dispersant additive. This work aims to study the influence of variation of the time of addition of the polycarboxylate (0, 5, 10 and 15 minutes) in cement pastes, considering the initial periods of hydration of cement particles as fundamental point for better performance dispersant additive. Pastes were prepared with a density set at 15.6 lb/gal (1.87 g/cm3) and polycarboxylate concentrations ranging from 0.01 gpc to 0.05 gpc circulation temperature (BHCT) of 51°C and static temperature (BHST) of 76 C. The pastes were characterized from a rheological measurements, volume filtered, thickening time and resistance to compression formulations. Also were carried out tests Diffraction X-ray (XRD) and Scanning Electron Microscopy (MEV). The results showed that the addition of policaboxilato after 15 minutes decreased by 70% the values of rheological parameters. According to results of DRX and MEV, the addition of dispersant after 15 minutes did not affect the chemical reactions and subsequent formation of cement hydration products. A study of the economic feasibility to realize the financial benefits of the technique, which can be seen only with the use of the technique in this work to reduce the cost of production of cement paste was carried out, can get up to $ 1015.00 for each folder 100 barrels produced with said formulations.
Resumo:
Cement pastes used in cementing oil wells operations are prepared according to the specific characteristics of each well. The physical properties requested for each folder formulation depend on the temperature and pressure of the well to be cemented. The rheological properties of the pulp are important control parameter for efficiency in transportation and positioning the folder during the cementing operation. One of the main types of additive used for the adjustment of rheological properties of cement pastes is the dispersant additive. This work aims to study the influence of variation of the time of addition of the polycarboxylate (0, 5, 10 and 15 minutes) in cement pastes, considering the initial periods of hydration of cement particles as fundamental point for better performance dispersant additive. Pastes were prepared with a density set at 15.6 lb/gal (1.87 g/cm3) and polycarboxylate concentrations ranging from 0.01 gpc to 0.05 gpc circulation temperature (BHCT) of 51°C and static temperature (BHST) of 76 C. The pastes were characterized from a rheological measurements, volume filtered, thickening time and resistance to compression formulations. Also were carried out tests Diffraction X-ray (XRD) and Scanning Electron Microscopy (MEV). The results showed that the addition of policaboxilato after 15 minutes decreased by 70% the values of rheological parameters. According to results of DRX and MEV, the addition of dispersant after 15 minutes did not affect the chemical reactions and subsequent formation of cement hydration products. A study of the economic feasibility to realize the financial benefits of the technique, which can be seen only with the use of the technique in this work to reduce the cost of production of cement paste was carried out, can get up to $ 1015.00 for each folder 100 barrels produced with said formulations.
Resumo:
The present study aims the characterization of thermally affected carbonate rocks from Jandaíra Formation in contact with Paleogene and Neogene basic intrusions in the region of the Pedro Avelino and Jandaíra municipalities (RN), northeastern Brazil. For this study, field, petrographic, x-ray diffraction, electron microprobe, and whole rock litogeochemistry data of carbonates were undertaken. The thermally unaffected limestones are classified like wackstones, grainstones and packstones. They may constitute carbonates grains of benthic foraminifera, echinoderm spines, ostracods, algae, corals, bivalves, gastropods, peloids and intraclasts. The porosities are classified like vug, intraparticle, interparticle, intercrystal and moldic types. The major minerals are calcite, ankerite and dolomite; the detrital are montmorillonite, pyrite, limonite, quartz and microcline. The thermally affected limestones are very coarse to very fine-grained and light to dark gray color. The fossiliferous components totally disappear, and the porosity tends to disappear. With the data obtained, it can be inferred that the carbonate protoliths would be calciferous to dolomitic limestones, both with small amount of clay minerals. Crystalline carbonates from dolomitic protolith have rhombohedral calcite and iron oxides / hydroxides, making the rocks much darker. The carbonates from calciferous protolith have a wide variation of grain size according to the recrystallization degree, increasing toward contact with the basic bodies. In this group, it was identified the minerals lizardite and spinel in weakly to moderately affected samples, and spinel and spurrite in strongly affected rocks, as well as calcite, that occur everywhere. The geological context (shallow level diabase intrusions), the crystallization of the pyrometamorphic minerals spurrite and olivine, and comparison with diagrams from the literature allow estimating temperatures and pressures around 1050-1200 °C and 0.5-1.0 kbar, respectively, for PTOTAL=PCO2. The post-intrusion cooling would have afforded the releasing of metasomatic / hydrothermal fluids, allowing the opening of the metamorphic system, with possible contribution of chemical elements from host units (sandstones, shales) and from basic intrusions. This would induce hydration of previous phases, allowing the formation of serpentine, chlorite and brucite. The results discussed here reveal the strong influence of the heat from basic intrusions within the sedimentary pile. Whereas in the offshore portion of the basin occur sills with up to 1000 m thickness, the understanding of pyrometamorphism might be useful for understanding and measuring the thermally affected rocks.
Resumo:
The present study aims the characterization of thermally affected carbonate rocks from Jandaíra Formation in contact with Paleogene and Neogene basic intrusions in the region of the Pedro Avelino and Jandaíra municipalities (RN), northeastern Brazil. For this study, field, petrographic, x-ray diffraction, electron microprobe, and whole rock litogeochemistry data of carbonates were undertaken. The thermally unaffected limestones are classified like wackstones, grainstones and packstones. They may constitute carbonates grains of benthic foraminifera, echinoderm spines, ostracods, algae, corals, bivalves, gastropods, peloids and intraclasts. The porosities are classified like vug, intraparticle, interparticle, intercrystal and moldic types. The major minerals are calcite, ankerite and dolomite; the detrital are montmorillonite, pyrite, limonite, quartz and microcline. The thermally affected limestones are very coarse to very fine-grained and light to dark gray color. The fossiliferous components totally disappear, and the porosity tends to disappear. With the data obtained, it can be inferred that the carbonate protoliths would be calciferous to dolomitic limestones, both with small amount of clay minerals. Crystalline carbonates from dolomitic protolith have rhombohedral calcite and iron oxides / hydroxides, making the rocks much darker. The carbonates from calciferous protolith have a wide variation of grain size according to the recrystallization degree, increasing toward contact with the basic bodies. In this group, it was identified the minerals lizardite and spinel in weakly to moderately affected samples, and spinel and spurrite in strongly affected rocks, as well as calcite, that occur everywhere. The geological context (shallow level diabase intrusions), the crystallization of the pyrometamorphic minerals spurrite and olivine, and comparison with diagrams from the literature allow estimating temperatures and pressures around 1050-1200 °C and 0.5-1.0 kbar, respectively, for PTOTAL=PCO2. The post-intrusion cooling would have afforded the releasing of metasomatic / hydrothermal fluids, allowing the opening of the metamorphic system, with possible contribution of chemical elements from host units (sandstones, shales) and from basic intrusions. This would induce hydration of previous phases, allowing the formation of serpentine, chlorite and brucite. The results discussed here reveal the strong influence of the heat from basic intrusions within the sedimentary pile. Whereas in the offshore portion of the basin occur sills with up to 1000 m thickness, the understanding of pyrometamorphism might be useful for understanding and measuring the thermally affected rocks.
Resumo:
Analisar a atuação dos enfermeiros de unidade de terapia intensiva na prevenção da úlcera por pressão. Método: trata-se de estudo descritivo desenvolvido com 13 enfermeiros da unidade de terapia intensiva do Hospital Universitário Onofre Lopes (HUOL), em Natal-RN. Foi aplicado um questionário, submetido à análise de conteúdo temática. O estudo foi aprovado pelo Comitê de Ética da Universidade Federal do Rio Grande do Norte (UFRN), sob o CAAE n. 0240.0.051.000-10. Resultados: os enfermeiros reportaram a realização da mudança de decúbito, a avaliação de risco, a discussão com os colegas sobre as medidas adotadas, a higiene e hidratação da pele do paciente através de uso de ácidos graxos essenciais e hidratante corporal, o cuidado com a disposição dos lençóis, de forma a evitar dobras, a utilização de colchão de ar e a aplicação de placas de hidrocoloide nas proeminências ósseas. Conclusão: a prática da prevenção das úlceras por pressão aplicada pelos enfermeiros da unidade de terapia intensiva ocorre sem padronização dos cuidados
Resumo:
Gene therapy is one of the major challenges of the post-genomic research and it is based on the transfer of genetic material into a cell, tissue or organ in order to cure or improve the patient s clinical status. In general, gene therapy consists in the insertion of functional genes aiming substitute, complement or inhibit defective genes. The achievement of a foreigner DNA expression into a population of cells requires its transfer to the target. Therefore, a key issue is to create systems, vectors, able to transfer and protect the DNA until it reaches the target. The disadvantages related to the use of viral vectors have encouraged efforts to develop emulsions as non-viral vectors. In fact, they are easy to produce, present suitable stability and enable transfection. The aim of this work was to evaluate two different non-viral vectors, cationic liposomes and nanoemulsions, and the possibility of their use in gene therapy. For the two systems, cationic lipids and helper lipids were used. Nanoemulsions were prepared using sonication method and were composed of Captex® 355; Tween® 80; Spam® 80; cationic lipid, Stearylamine (SA) or 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) and water (Milli-Q®). These systems were characterized by average droplet size, Polidispersion Index (PI) and Zeta Potential. The stability of the systems; as well as the DNA compaction capacity; their cytotoxicity and the cytotoxicity of the isolated components; and their transfection capacity; were also evaluated. Liposomes were made by hydration film method and were composed of DOTAP; 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), containing or not Rhodaminephosphatidylethanolamine (PE- Rhodamine) and the conjugate Hyaluronic Acid DOPE (HA-DOPE). These systems were also characterized as nanoemulsions. Stability of the systems and the influence of time, size of plasmid and presence or absence of endotoxin in the formation of lipoplexes were also analyzed. Besides, the ophthalmic biodistribution of PE-Rhodamine containing liposomes was studied after intravitreal injection. The obtained results show that these systems are promising non-viral vector for further utilization in gene therapy and that this field seems to be very important in the clinical practice in this century. However, from the possibility to the practice, there is still a long way
Resumo:
This work addresses the production of lightweight concrete building elements, such as plates, prefabricated slabs for pre-molded and panels of fencing, presenting a singular concrete: the Lightweight Concrete, with special properties such low density and good strength, by means of the joint use of industrial waste of thermosetting unsaturated polyesters and biodegradable foaming agent, named Polymeric Lightweight Concrete. This study covered various features of the materials used in the composition of the Polymeric Lightweight Concrete, using a planning of factorial design 23, aiming at studying of the strength, production, dosage processes, characterization of mechanical properties and microstructural analysis of the transition zone between the light artificial aggregate and the matrix of cement. The results of the mechanical strength tests were analyzed using a computational statistics tool (Statistica software) to understand the behavior and obtain the ideal quantity of each material used in the formula of the Polymeric Lightweight Concrete. The definition of the ideal formula has the purpose of obtaining a material with the lowest possible dry density and resistance to compression in accordance with NBR 12.646/92 (≥ 2.5 MPa after 28 days). In the microstructural characterization by scanning electron microscopy it was observed an influence of the materials in the process of cement hydration, showing good interaction between the wrinkled face of the residue of unsaturated polyesters thermosetting and putty and, consequently, the final strength. The attaining of an ideal formula, given the Brazilian standards, the experimental results obtained in the characterization and comparison of these results with conventional materials, confirmed that the developed Polymeric Lightweight Concrete is suitable for the production of building elements that are advantageous for construction
Resumo:
Generally, cellulose ethers improves mortar properties such as water retention, workability and setting time, along with adherence to the substrate. However, a major disadvantage of the addition of cellulose ethers in mortars is the delay in hydration of the cement. In this paper a cellulose phosphate (Cp) was synthesized water soluble and has been evaluated the effect of their incorporation into mortar based on Portland cement. Cellulose phosphate obtained was characterized by spectrophotometry Fourier transform infrared (FTIR), X-ray diffraction (XRD), elemental analysis and scanning electron microscopy (SEM). Mortar compositions were formulated with varying phosphorus content in cellulose and cellulose phosphate concentrations, when used in partial or total replacement of the commercial additive based hydroxyethyl methyl cellulose (HEMC). The mortars formulated with additives were prepared and characterized by: testing in the fresh state (consistency index, water retention, bulk density and air content incorporated) and in the hardened state (absorption by capillarity, density, flexural and compression strength). In mixtures the proportion of sand:cement of 1:5 (v / v) and factor a / c = 1.31 and water were held constant. Overall, the results showed that the celluloses phosphates employed in mortars added acted significantly when partially substituting the commercial additive. With regard to consistency index, water retention and bulk density in the fresh state and absorption by capillarity and bulk density apparent in the hardened state, showed no appreciable differences as compared to the commercial additive. The incorporated air content in the fresh state reduced markedly, but did not affect other properties. The mortars with cellulose phosphate, partially replacing the commercial additive showed an improvement of the properties of flexural strength and compressive strength
Resumo:
Lightweight oilwell cement slurries have been recently studied as a mean to improve zonal isolation and sheath-porous formation adherence. Foamed slurries consisting of Portland cement and air-entraining admixtures have become an interesting option for this application. The loss in hydrostatic pressure as a consequence of cement hydration results in the expansion of the air bubbles entrapped in the cement matrix, thus improving the sheath-porous formation contact. Consequently, slurries are able to better retain their water to complete the hydration process. The main objective of the present study was to evaluate the effect of the addition of an air-entraining admixture on the density, stability and permeability of composite slurries containing Portland cement and diatomite as light mineral load. Successful formulations are potential cementing materials for low fracture gradient oilwells. The experimental procedures used for slurry preparation and characterization were based on the American Petroleum Institute and ABNT guidelines Slurries containing a pre-established concentration of the air-entraining admixture and different contents of diatomite were prepared aiming at final densities of 13 to 15 lb/gal. The results revealed that the reduction of 15 to 25% of the density of the slurries did not significantly affect their strength. The addition of both diatomite and the air-entraining admixture increased the viscosity of the slurry providing better air-bubble retention in the volume of the slurry. Stable slurries depicted bottom to top density variation of less than 1.0 lb/gal and length reduction of the stability sample of 5.86 mm. Finally, permeability coefficient values between 0.617 and 0.406 mD were obtained. Therefore, lightweight oilwell cement slurries depicting a satisfactory set of physicochemical and mechanical properties can be formulated using a combination of diatomite and air-entraining admixtures for low fracture gradient oilwells
Resumo:
The materials engineering includes processes and products involving several areas of engineering, allowing them to prepare materials that fulfill the needs of various new products. In this case, this work aims to study a system composed of cement paste and geopolymers, which can contribute to solving an engineering problem that directly involves the exploitation of oil wells subject to loss of circulation. To correct it, has been already proposed the use of granular materials, fibers, reducing the drilling fluid or cement paste density and even surface and downhole mixed systems. In this work, we proposed the development of a slurry mixed system, the first was a cement-based slurry and the second a geopolymer-based slurry. The cement-based slurry was formulated with low density and extenders, 12.0 ppg (1.438 g/cm ³), showing great thixotropic characteristics. It was added nano silica at concentrations of 0.5, 1.0 and 1.5 gps (66.88, 133.76 and 200.64 L/m3) and CaCl2 at concentrations of 0.5, 1, 0 and 1.5%. The second system is a geopolymer-based paste formulated from molar ratios of 3.5 (nSiO2/nAl2O3), 0.27 (nK2O/nSiO2), 1.07 (nK2O/nAl2O3) and 13.99 (nH2O/nK2O). Finally, we performed a mixture of these two systems, for their application for correction of circulation lost. To characterize the raw materials, XRD, XRF, FTIR analysis and titration were performed. The both systems were characterized in tests based on API RP10B. Compressive strength tests were conducted after curing for 24 hours, 7 and 28 days at 58 °C on the cement-based system and the geopolymer-based system. From the mixtures have been performed mixability tests and micro structural characterizations (XRD, SEM and TG). The results showed that the nano silica, when combined with CaCl2 modified the rheological properties of the cement slurry and from the concentration of 1.5 gpc (200.64 L / m³) it was possible to obtain stable systems. The system mixture caused a change in the microstructure of the material by favoring the rate of geopolymer formation to hinder the C3S phase hydration, thus, the production of CSH phases and Portlandite were harmed. Through the mixability tests it can be concluded that the system, due to reduced setting time of the mixture, can be applied to plug lost circulation zones when mixed downhole