24 resultados para Glass fiber industry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aims to evaluate the mechanical properties of polymer matrix composites reinforced with sisal fabric bidirectional tissue (Agave sisalana,) and E-glass fibers, containing the following configuration: a polymer matrix hybrid composite (Polyester Resin orthophalic) reinforced with three (3) layers of glass fibers and alternating-2 (two) layers of bidirectional sisal fabric, and finally a composite of polymer matrix reinforced with five (5) layers of glass fiber mat-type E. For this purpose as first step, the preparation of by sisal, since they are not on the market. The composites were made by manual lamination (Hand lay-up) and evaluated for tensile properties and three point bending both in the dry, and wet conditions aswele as immersed in oil. Macroscopic and microscopic characteristics of the materialsweve awalysed, after the completion of the mechanical tests. After the studies, it was proven that the sisal fiber decreases the tensile stiffness of the material above 50% for both situations studied the tensile strength of the material decreases by approximately 40% for the cases mentioned, and when compared to the specific strength stiffness values drop to 14.6% and 29.02% respectively for the dry state only. Constants for bending the values were are to approximately 50% to 25% for strength and stiffness of the material for the cases dry, wet and immersed in oil. Under the influence of tension fluids do not interfere in the stiffness of the material for the bending tests, the same does not occur with the resistance, and these values are modified only in the cases stiffness and flexural strength

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to assess ambient air quality in a urban area of Natal, capital of Rio Grande do Norte (latitude 5º49'29 '' S and longitude 35º13'34'' W), aiming to determine the metals concentration in particulate matter (PM10 and PM2,5) of atmospheric air in the urban area o the Natal city. The sampling period for the study consisted of data acquisition from January to December 2012. Samples were collected on glass fiber filters by means of two large volumes samplers, one for PM2,5 (AGV PM 2,5) and another for PM10 (PM10 AGV). Monthly averages ranged from 8.92 to 19.80 g.m-3 , where the annual average was 16,21 g.m-3 for PM10 and PM2,5 monthly averages ranged from 2,84 to 7,89 g.m -3 , with an annual average of 5,61 g.m-3 . The results of PM2,5 and PM10 concentrations were related meteorological variables and for information on the effects of these variables on the concentration of PM, an exploratory analysis of the data using Principal Component Analysis (PCA) was performed. The results of the PCA showed that with increasing barometric pressure, the direction of the winds, the rainfall and relative humidity decreases the concentration of PM and the variable weekday little influence compared the meteorological variables. Filters containing particulate matter were selected in six days and subjected to microwave digestion. After digestion samples were analyzed by with Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The concentrations for heavy metals Vanadium, Chromium, Manganese, Nickel, Copper, Arsenic and lead were determined. The highest concentrations of metals were for Pb and Cu, whose average PM10 values were, respectively, 5,34 and 2,34 ng.m-3 and PM2,5 4,68 and 2,95 ng.m-3 . Concentrations for metals V, Cr, Mn, Ni, and Cd were respectively 0,13, 0,39, 0,48, 0,45 and 0,03 ng.m-3 for PM10 fraction and PM2,5 fraction, 0,05, 0,10, 0,10, 0,34 and 0,01 ng.m-3. The concentration for As was null for the two fractions

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a study of the integration of filters and microstrip antennas, yielding devices named as filtennas for applications in wireless communications systems. The design of these structures is given from the observation of filtennas based integration between horn antennas and frequency selective surfaces (FSS), used in the band X. The choice of microstrip line structures for the development of a new configuration filtennas justifies the wide application of these transmission lines, in recent decades, always resulting in the production of circuit structures with planar light-weight, compact size, low cost, easy to construct and particularly easy to integrate with other microwave circuits. In addition, the antenna structure considered for the composition of filtennas consists of a planar monopole microstrip to microstrip filters integrated in the feed line of the antenna. In particular, are considered elliptical monopole microstrip (operating in UWB UWB) microstrip filters and (in structures with associated sections in series and / or coupled). In addition, the monopole microstrip has a proper bandwidth and omnidirectional radiation pattern, such that its integration with microstrip filters results in decreased bandwidth, but with slight changes in the radiation pattern. The methods used in the analysis of monopoles, and filters were filtennas finite elements and moments by using commercial software Ansoft Designer and HFSS Ansoft, respectively. Specifically, we analyze the main characteristics of filtennas, such as radiation pattern, gain and bandwidth. Were designed, constructed and measures, several structures filtennas, for validation of the simulated results. Were also used computational tools (CAD) in the process of building prototypes of planar monopoles, filters and filtennas. The prototypes were constructed on substrates of glass-fiber (FR4). Measurements were performed at the Laboratory for Telecommunications UFRN. Comparisons were made between simulated and measured, and found good agreement in the cases considered

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The polymer matrix composite materials are being used on a large scale in the most different industrial fields such as aerospace, automotive, oil, among others, since the industrial perspectives is currently working with materials which have a good mechanical performance at high service life and cost / benefit. Thus, the determination of the mechanical properties is indispensable for the characterization of waste resulting in greater expansion of this type of material. Thus, this work will be obtained three plates laminated with tereftálica polymeric matrix reinforced by a bidirectional woven E-glass and kevlar both industrially made, where the plates are manufactured by manual lamination process (hand lay-up), all laminates have five enhancement layers, the first hybrid laminate will consist of bidirectional woven E-glass fiber, kevlar fiber interspersed with layers, is formed by the second bidirectional woven kevlar fiber at the ends of the laminate (two layers), and in the center the glass fiber fabric (three layers), the third plate is composed of only the bidirectional woven E-glass fiber. Then were prepared specimens (CP) by standard, to determine the mechanical properties of tensile and bending in three points. After fabrication of the specimens, they were immersed in oil and seawater. After that, there was a comparison of the mechanical properties for the test condition in the dry state. Showing that there was a considerable increase in the properties studied because the effect of hybridization in laminates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The work presents the effect of plasma treatment when applied in fibers or carbon/glass posts in the adhesion fiber/resin and posts/cement. This has for objective the modification of the surface of the fibers, as well as the wettability of the posts, seeking the improvement of the adhesion and of the connection fiber/resin in the processing of polymeric composites reinforced with the same ones. 120 posts (Reforpost) were used and 30 meters of fibers of carbon and of glass (Fibrex), of the company Angelus. The samples were divided in three groups of 40 specimens: GROUP I - 20 posts of glass fiber and 20 of carbon without treatment to it shapes, GROUP II -20 posts of glass fiber and 20 of carbon treated to it shapes in the surface and GROUP III - 20 posts of glass fiber and 20 of carbon make with fibers in natura after plasma treatment. The plasma treatment was accomplished with oxygen and with temperature in the camera fixed at 200°C, for one hour of exhibition. The posts and the fibers were characterized before and after the treatment. The wettability was measure by pendent drop method, and interface fiber/resin and posts/cement were observed by optical and electronic microscopy. It was observed that both wettability and texture were increased with plasma treatment

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pipelines for the transport of crude oil from the production wells to the collecting stations are named production lines . These pipes are subjected to chemical and electrochemical corrosion according to the environment and the type of petroleum transported. Some of these lines, depending upon the composition of the fluid produced, may leak within less than one year of operation due to internal corrosion. This work aims at the development of composite pipes with an external protecting layer of high density polyurethane for use in production lines of onshore oil wells, meeting operational requirements. The pipes were manufactured using glass fibers, epoxy resin, polyester resin, quartz sand and high density polyurethane. The pipes were produced by filament winding with the deposition of high density polyurethane on the external surface and threaded ends (API 15 HR/PM-VII). Three types of pipes were manufactured: glass/epoxy, glass/epoxy with an external polyurethane layer and glass/epoxy with an intermediate layer of glass fiber, polyester, sand and with an external polyurethane layer. The three samples were characterized by Scanning Electronic Microscopy (SEM) and for the determination of constituent content. In addition, the following tests were conducted: hydrostatic test, instant rupture, shorttime failure pressure, Gardner impact, transverse stiffness and axial tension. Field tests were conducted in Mossoró RN (BRAZIL), where 1,677 meters of piping were used. The tests results of the three types of pipes were compared in two events: after two months from manufacturing of the samples and after nine months of field application. The results indicate that the glass/epoxy pipes with an intermediate layer of fiber glass composite, polyester e sand and with an external layer of high density polyurethane showed superior properties as compared to the other two and met the requirements of pressure class, axial tensile strength, transverse stiffness, impact and environmental conditions, for onshore applications as production lines

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the occurrence of diseases in the use of structural reinforcements in composites, with presentation of concrete blanket detachment, has been identified the need to evaluate the performance of concrete reinforced with glass fiber. This study aims to evaluate these concretes by means of testing methodologies, using concrete with low resistance with structural reinforcement for confinement by preimpregnated glass fiber and traditional fiberglass blanket. The first stage of work was the development of methodologies for analysis, opting for four types, such as the acoustic survey, strength to compressive, the pull-off and ultrasound. Next, tests were carried out using the four selected methodologies in 30 of proof-of-specimens by 5x10 cm, 15 were reinforced with the traditional fiberglass blanket with 5specimens exposed to test a marine environment of marine coastline of Natal-RN and 15 were reinforced with a pre-impregnated glass fiber blanket, as well as 5specimens exposed to a test environment of the marine coastline of Natal-RN. After conducting the acoustic survey, it has been verified a lack of delaminating and air bubbles in the samples, confirming the absence of gross shortcomings in the implementation of the ribs both the traditional fiberglass blanket and in the preimpregnated fiber glass blanket. After carrying out methods of pull-off and compressive strengthening test it was observed that the reinforced proof-bodies with pre-impregnated glass blanket showed maximum stresses higher than the traditional fiberglass blanket; consequently a greater grip with the formation of a smaller area of . fracture, unlike traditional glass mat, which showed lower maximum stresses, with a greater area of fracture. It was also found that the traditional fiberglass blanket presented detachment of blanket-concrete interface, unlike the pre-impregnated fiberglass blanket, which showed a better grip on the blanket-concrete interface. In the trial of ultrasound there was no presence of cracks in the blanket-concrete interface, yielding to both blankets good compactness of the concrete. At the end of this work, they were developed and proposed two methods of testing for evaluation of reinforced concrete structures with composites, for standardization, the acoustic survey and pull-off

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer matrix composites offer advantages for many applications due their combination of properties, which includes low density, high specific strength and modulus of elasticity and corrosion resistance. However, the application of non-destructive techniques using magnetic sensors for the evaluation these materials is not possible since the materials are non-magnetizable. Ferrites are materials with excellent magnetic properties, chemical stability and corrosion resistance. Due to these properties, these materials are promising for the development of polymer composites with magnetic properties. In this work, glass fiber / epoxy circular plates were produced with 10 wt% of cobalt or barium ferrite particles. The cobalt ferrite was synthesized by the Pechini method. The commercial barium ferrite was subjected to a milling process to study the effect of particle size on the magnetic properties of the material. The characterization of the ferrites was carried out by x-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM) and vibrating sample magnetometry (VSM). Circular notches of 1, 5 and 10 mm diameter were introduced in the composite plates using a drill bit for the non-destructive evaluation by the technique of magnetic flux leakage (MFL). The results indicated that the magnetic signals measured in plates with barium ferrite without milling and cobalt ferrite showed good correlation with the presence of notches. The milling process for 12 h and 20 h did not contribute to improve the identification of smaller size notches (1 mm). However, the smaller particle size produced smoother magnetic curves, with fewer discontinuities and improved signal-to-noise ratio. In summary, the results suggest that the proposed approach has great potential for the detection of damage in polymer composites structures

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades