18 resultados para GANADO BOVINO - ALIMENTOS - PIEDEMONTE (LLANOS)
Resumo:
The search for new sources of environmentally friendly energy is growing every day. Among these alternative energies, biodiesel is a biofuel that has had prominence in world production. In Brazil, law 11.097, determine that all diesel sold in the country must be made by mixing diesel/biodiesel. The latter called BX, , where X represents the percent volume of biodiesel in the diesel oil, as specified by the ANP. In order to guarantee the quality of biodiesel and its mixtures, the main properties which should be controlled are the thermal and oxidative stability. These properties depend mainly of the chemical composition on the raw materials used to prepare the biodiesel. This dissertation aims to study the overall thermal and oxidative stability of biodiesel derived from cotton seed oil, sunflower oil, palm oil and beef tallow, as well as analyze the properties of the blends made from mineral oil and biodiesel in proportion B10. The main physical-chemical properties of oils and animal fat, their respective B100 and blends were determined. The samples were characterized by infrared and gas chromatography (GC). The study of thermal and oxidative stability were performed by thermogravimetry (TG), pressure differential scanning calorimeter (PDSC) and Rancimat. The obtained biodiesel samples are within the specifications established by ANP Resolution number 7/2008. In addition, all the blends and mineral diesel analyzed presented in conformed withthe ANP Regularion specifications number 15/2006. The obtained results from TG curves data indicated that the cotton biodiesel is the more stable combustible. In the kinetic study, we obtained the following order of apparent activation energy for the samples: biodiesel from palm oil > sunflower biodiesel > tallow biodiesel > cotton biodiesel. In terms of the oxidative stability, the two methods studied showed that biodiesel from palm oil is more stable then the tallow. Within the B100 samples studied only the latter were tound to be within the standard required by ANP resolution N° 7. Testing was carried out according to the EN14112. This higher stability its chemical composition
Resumo:
Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel
Resumo:
Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel