43 resultados para Fibras de cana-de-açucar
Resumo:
Flowering is controlled by several environmental and endogenous factors, usually associated with a complex network of metabolic mechanisms. The gene characterization in Arabidopsis model has provided much information about the genetic and molecular mechanisms that control flowering process. Some of these genes had been found in rice and maize. However, in sugarcane this processe is not well known. It is known that early flowering may reduce its production up to 60% at northeast conditions. Considering the impact of early flowering in sugarcane production, the aim of this work was to make the gene characterization of two cDNAs previously identified in subtractive cDNA libraries: scPKCI and scSHAGGY. The in silico analysis showed that these two cDNAs presented both their sequence and functional catalytic domains conserved. The results of transgenic plants containing the overexpression of the gene cassette scPKCI in sense orientation showed that this construction had a negative influence on the plant development as it was observed a decrease in plant height and leaf size. For the scPKCI overexpression in antisense orientation it was observed change in the number of branches from T1 transgenic plants, whereas transgenic T2 plants showed slow development during germination and initial stages of development. The other cDNA analyzed had homology to SHAGGY protein. The overexpression construct in sense orientation did not shown any effect on development. The only difference observed it was an increase in stigma structure. These results allowed us to propose a model how these two genes may be interact and affect floweringdevelopment.
Resumo:
The flowering is a physiological process that it is vital for plants. This physiological process has been well studied in the plant model Arabidopsis, but in sugarcane this process is not well known. The transition of the shoot apical meristem from vegetative to flowering is a critical factor for plant development. At Brazil northeastern region, the transition to flowering in sugarcane has an important effect as it may reduce up to 60% its production. This is a consequence of the sugar translocation from stalks to the shoot apical meristem which is necessary during the flowering process. Therefore, the aim of this work was to explore and analyze cDNAs previously identified using subtractive cDNA libraries. The results showed that these cDNAs showed differential expression profile in varieties of sugarcane (early x late flowering). The in silico analysis suggested that these cDNAs had homology to calmodulin, NAC transcription factor and phosphatidylinositol, a SEC14, which were described in the literature as having a role in the process of floral development. To better understand the role of the cDNA homologous to calmodulin, tobacco plants were transformed with overexpression cassettes in sense and antissense orientation. Plants overexpressing the cassette in sense orientation did not flowered, while plants overexpressing the cassette in the antissense orientation produced flowers. The data obtained in this study suggested the possible role from CAM sequence, SEC14 and NAC in the induction/floral development pathway in sugarcane, this is the first study in order to analyze these genes in the sugarcane flowering process.
Resumo:
The genus Saccharum belongs to Poaceae family. Sugarcane has become important monocultures in Brazil due to their products: ethanol and sugar. The production may change between different regions from Brazil. This difference is related to soil, climatic conditions and temperature that promotes oxidative stress that may induce an early flowering. The aim of this work was to identify the effects of oxidative stress. In order to analyse this, sugarcane plants were submitted to oxidative stress using hydrogen peroxide. After this treatment, the oxidative stress were analyzed Then, the plant responses were analyzed under different approaches, using morphophysiological, biochemical and molecular tools. Thus, sugarcane plants were grown under controlled conditions and until two months they were subjected first to a hydroponics condition for 24 hours in order to acclimation. After this period, these plants were submitted to oxidative stresse using 0 mM, 10 mM, 20 mM and 30 mM hydrogen peroxide during 8 hours. The histomorphometric analysis allowed us to verify that both root and leaf tissues had a structural changes as it was observed by the increased in cell volume, lignin accumulation in cell walls. Besides, this observation suggested that there was a change in redox balance. Also, it was analyzed the activity of the SOD, CAT and APX enzymes. It was observed an increase in the SOD activity in roots and it was also observed a lipid peroxidation in leaves and roots. Then, in order to identify proteins that were differently expressed in this conditions it was used the proteomic tool either by bidimensional gel or by direct sequencing using the Q-TOF EZI. The results obtained with this approach identified more than 3.000 proteins with the score ranging from 100-5000 ions. Some of the proteins identified were: light Harvesting; oxygenevolving; Thioredoxin; Ftsh-like protein Pftf precusor; Luminal-binding protein; 2 cys peroxiredoxin e Lipoxygenase. All these proteins are involved in oxidative stress response, photsynthetic pathways, and some were classified hypothetical proteins and/or unknown (30% of total). Thus, our data allows us to propose that this treatment induced an oxidative stress and the plant in response changed its physiological process, it made changes in tissue, changed the redox response in order to survival to this new condition
Resumo:
The concrete for centuries constituted an essential structural element in the construction industry due to its relative ease of forming, before the weather durability, low cost, its lower maintenance compared to other materials such as steel. However, when the concrete is exposed to high temperatures tends to lose its mechanical characteristics, and may even result in loss of section, which undermines the stability and mechanical strength of structural elements. The pathologies resulting from exposure to elevated temperatures ranging from cracks, pops up chipping explosives (spalling). Recently, the technology of concrete is closely related to the study of its microstructure. The use of fibers added to concrete has been revealed as a solution to increase the mechanical strength of the concrete, it acts directly on the distribution of efforts to act in the play within the microstructure. In this work we used recycled PET fibers embedded in concrete with 15x2mm fck = 30MPa, water/cement ratio of 0.46, in works made for verification of mechanical strength of this mixture submitted to high temperature. The specimens of concrete with addition of PET fibers were tested after exposure to temperatures: ambient (30ºC), 100°C, 200°C, 300°C, 400°C, 600°C and 900°C. It was found that the concrete loses significant strength when exposed to temperatures above 300°C, however the use of fiber PET may delay the risk of collapse of structures for the formation of a network of channels that facilitate the escape of vapor 'water, reducing the pore pressure inside the structural element
Resumo:
Concrete is the second most consumed product in the world and the incorporation of the Sugar Bagasse Ash (SBA) into this material can provide solutions for the utilization of by-products from other industries, thus reducing the environmental impact. The general aim of this dissertation focuses on analyzing the mechanical behavior of concrete with addition of SBA from three different species of sugar cane, through tests of consistency, compressive strength, porosity, absorption, voids and Scanning Electron Microscopy (SEM). Were prepared 13 specimens for each specific pattern and level of incorporation of SBA (10%, 20% and 30%) of the three varieties collected, totaling 130 samples of concrete. The trait was employed 1:2:3 (cement: sand: aggregates) in relation to the cement mass with a water / cement ratio of 0.532 and 1% additive Tec 400 Mult also based on the weight of cement. According to the results obtained in this study, it was concluded that the variety of cane sugar, used in the production of the CBC, influenced the mechanical behavior of the resulting concrete. All concrete with addition of SBA, reported a reduction of at least 10% in the properties related to permeability and an increase in the compressive strength of at least 16% compared to standard concrete at 28 days
Resumo:
The reinforced concrete structures are largely used in buildings worldwide. Upon the occurrence of fire in buildings, there is a consensus among researchers that the concrete has a high resistance to fire, due mainly to its low thermal conductivity. However, this does not mean that this material is not affected by exposure to high temperatures. Reduction of the compressive strength, modulus of elasticity, discoloration and cracking, are some of the effects caused by thermal exposure. In the case of concretes with higher resistance occurs even desplacamentos explosives, exposing the reinforcement to fire and contributing to reducing the support capacity of the structural element. Considering the above, this study aims to examine how the compressive strength and porosity of concrete are affected when subjected to high temperatures. Were evaluated concrete of different resistances, and even was the verified if addition fibers of polyethylene terephthalate (PET) in concrete can be used as an alternative to preventing spalling. The results indicated that explosive spalling affect not only high strength concrete whose values of this study ranged from 70 to 88 MPa, as well as conventional concrete of medium strength (52 MPa) and the temperature range to which the concrete begins to suffer significant changes in their resistance is between 400 º C and 600 º C, showing to 600 º C a porosity up to 188% greater than the room temperature
Resumo:
Deregulation of the sugar-alcohol sector in the 90s meant that agribusiness firms begin a process of reorganization of their production structures to enhance their abilities to become competitive in the new scenario. This study aims to examine the Production Chain of Sugar cane in Agreste region of Rio Grande do Norte, with studies to contribute to the competitiveness of farmers giving grants for planning and implementing policies, programs and projects, public and / or private. The method used in the study was researching the literature on the history of sugar cane in Brazil, agribusiness management, production chains and competitiveness, in field research used a questionnaire to collect information from farmers. It is concluded that the rural producers of cane sugar in newborns are not competitive and therefore it is necessary policies and / or for private gain in competitiveness of producers and consequently the production chain. It is hoped that the study serves as a subsidy for those policies proposição
Resumo:
In the last decades there was a significant increasing of the numbers of researchers that joint efforts to find alternatives to improve the development of low environmental impact technology. Materials based on renewable resources have enormous potentials of applications and are seen as alternatives for the sustainable development. Within other parameters, the sustainability depends on the energetic efficiency, which depends on the thermal insulation. Alternative materials, including vegetal fibers, can be applied to thermal insulation, where its first goal is to minimize the loss of energy. In the present research, it was experimentally analyzed the thermal behavior of fiber blankets of sisal (Agave sisalana) with and without surface treatment with oxide hidroxide (NaOH). Blankets with two densities (1100/1200 and 1300/1400 g/m2) were submitted to three rates of heat transfer (22.5 W, 40 W and 62.5 W). The analysis of the results allowed comparing the blankets treated and untreated in each situation. Others experiments were carried out to obtain the thermal conductivity (k), heat capacity (C) and the thermal diffusivity (α) of the blankets. Thermo gravimetric analyses were made to the verification of the thermal stability. Based on the results it was possible to relate qualitatively the effect of the heat transfer through the sisal blankets subjected to three heat transfer rates, corresponding to three temperature values (77 °C, 112 °C e 155 °C). To the first and second values of temperature it was verified a considerable reduction on the rate of heat transfer; nevertheless, to the third value of temperature, the surface of the blankets (treated and untreated) in contact with the heated surface of the tube were carbonized. It was also verified, through the analyses of the results of the measurements of k, C e α, that the blankets treated and untreated have values near to the conventional isolating materials, as glass wool and rock wool. It could be concluded that is technically possible the use of sisal blankets as constitutive material of thermal isolation systems in applications where the temperature do not reach values greater than 112 ºC
Resumo:
This research is based, at first, on the seeking of alternatives naturals reinforced in place of polymeric composites, also named reinforced plastics. Therein, this work starts with a whole licuri fiber micro structural characterization, as alternative proposal to polymeric composites. Licuri fiber is abundant on the Bahia state flora, native from a palm tree called Syagrus Coronata (Martius) Beccari. After, it was done only licuri fiber laminar composite developing studies, in order to know its behavior when impregnated with thermofix resin. The composite was developed in laminar structure shape (plate with a single layer of reinforcement) and produced industrially. The layer of reinforcement is a fabric-fiber unidirectional of licuri up in a manual loom. Their structure was made of polyester resin ortofitálica (unsaturated) only reinforced with licuri fibers. Fiber characterization studies were based on physical chemistry properties and their constitution. It was made by tension, scanning electron microscopy (SEM), x-ray diffraction (RDX) and thermal analyses (TG and DTA) tests, besides fiber chemistry analyses. Relating their mechanical properties of strength and hardness testing, they were determined through unit axial tension test and flexion in three points. A study in order to know fiber/matrix interface effects, in the final composites results, was required. To better understand the mechanical behavior of the composite, macroscopic and microscopic optical analysis of the fracture was performed
Resumo:
The search for sustainable technologies that can contribute to reduce energy consumption is a great challenge in the field of insulation materials. In this context, composites manufactured from vegetal sources are an alternative technology. The principal objectives of this work are the development and characterization of a composite composed by the rigid polyurethane foam derived from castor oil (commercially available as RESPAN D40) and sisal fibers. The manufacture of the composite was done with expansion controlled inside a closed mold. The sisal fibers where used in the form of needlepunched nonwoven with a mean density of 1150 g/m2 and 1350 g/m2. The composite characterization was performed through the following tests: thermal conductivity, thermal behavior, thermo gravimetric analysis (TG/DTG), mechanical strength in compression and flexural, apparent density, water absorption in percentile, and the samples morphology was analyzed in a MEV. The density and humidity percentage of the sisal fiber were also determined. The thermal conductivity of the composites was higher than the pure polyurethane foam, the addition of nonwoven sisal fibers will become in a higher level of compact foam, reducing empty spaces (cells) of polyurethane, inducing an increase in k value. The apparent density of the composites was higher than pure polyurethane foam. In the results of water absorption tests, was seen a higher absorption percent of the composites, what is related to the presence of sisal fibers which are hygroscopic. From TG/DTG results, with the addition of sisal fibers reduced the strength to thermal degradation of the composites, a higher loss of mass was observed in the temperature band between 200 and 340 °C, related to urethane bonds decomposition and cellulose degradation and its derivatives. About mechanical behavior in compression and flexural, composites presented a better mechanical behavior than the rigid polyurethane foam. An increase in the amount of sisal fibers induces a higher rigidity of the composites. At the thermal behavior tests, the composites were more mechanically and thermally resistant than some materials commonly used for thermal insulation, they present the same or better results. The density of nonwoven sisal fiber had influence over the insulation grade; this means that, an increaser in sisal fiber density helped to retain the heat
Resumo:
Nowadays, when accidents with oil tanker or shore tanks occur and there is oil spill, some arrangements are made in order to repress and to fix the situation. For the containment, barriers or detours are usually made of synthetic materials such as polyurethane foam. In order to clear water away, techniques like in loco burning, biodegradant agents, dispersant agents and sorbent materials application are used. The most of the sorbent materials are also synthetic and they are used because it is easy to store them and their availability in market. This dissertation introduces the study of vegetable fibers of pineapple leaf fibers (Ananas comosus (L.) Merr.), cotton fibers (Gossypium herbaceum L.), kapok fibers (Ceiba pentandra (L.) Gaertn.), curauá fibers (Ananas erectifolius L.B. Sm.) and sisal fibers (Agave sisalana Perrine) related to their capacity of sorption of oil in case of accidental spill in the ocean. This work evaluates the substitution possibility of synthetic materials by natural biodegradable materials with less cost
Resumo:
This study aimed to investigate the use of cane sugar ashes from small-scale stills of Eunápolis region, state of Bahia, in pottery mass that can be developed as porcelain stoneware. Bahia is the second largest producer of rum distillery in Brazil. In the production of rum is produced residue called bagasse, which is used to generate electricity in Power plants and in the distillery itself, generating ashes as residue, which is played in nature, causing environmental damage. We studied 5 (five) formulations of 0% 10% 20%, 30% and 40% by weight of the ash, without ignition and 3 (three) formulations of 10%, 20% and 30% with gray ash temperature of 1250ºC. The formulation at 0% by weight of ash was used for a comparison between the traditional mass of porcelain stoneware and the masses with the addition of ash calcined, replacing feldspar. The percentage by weight of kaolin and of Clay was kept the same, 30%, and all raw materials were derived from the state of Bahia. The samples were made in uniaxial array with dimensions of (60 x 20 x 5) mm and compressed to a pressure of 45 MPa. Assays were performed to characterize the raw by X-ray fluorescence, X-ray diffraction, ATD and ATG and Dilatometric analysis. The samples were sintered at temperatures of 1100°C, 1150°C, 1200°C and 1250°C, for the specimens with the ashes without ash and 1150° C and 1200° C for specimens with the gray level of calcined 60 minutes. and then we made a cooling ramp with the same rate of warming until reach ambient temperature. The sintered bodies were characterized by water absorption, porosity, linear shrinkage, bending strength and XRD of the fracture surface and the results analyzed. It was proven, after results of tests performed, that it is possible to use the ash residue of sugar cane bagasse on ceramic coating with the addition of up to 10% wt of the residue ash
Resumo:
The adhesive mortars are a mixture of cement, sand, and additives to polymers that retain the mixing water and promotes adherence, being used in setting on various ceramic substrates. The sand used in the production of these mortars is from the riverbeds, and with the increasing restriction of these sands extraction by environmental agencies, and often having to be transported over long distances to the consumer center. This work aims to design and physical and mechanical characterization of ecological adhesive mortar with total replacement of natural sand by sand from the crushing of limestone, and the addition of mineral ash biomass of cane sugar in partial replacement cement used in the production of adhesive mortar , aiming compositions that meet the regulatory specifications for use adhesive mortar. Standardized tests to determine the tensile bond strength (NBR 14081-4), determination of open time (NBR 14081-3) and determination of slip (NBR 14081-5) were performed. Were also conducted trials squeeze flow in different formulation, the mortar with addition of 15 % gray biomass of cane sugar for cement mortars as well as the total replacement of natural sand by sand limestone crushing, got the best performance among the mortars studied, it was found that the addition of biomass to replace cement is perfectly feasible due to its pozzolanic activity, which contributed to this reduction in the cement matrix formation of adhesive mortar
Resumo:
With the objective to promote sustainable development, the fibres found in nature in abundance, which are biodegradable, of low cost in comparison to synthetic fibres are being used in the manufacture of composites. The mechanical behavior of the curauá and pineapple leaf fibre (PALF) composites in different proportions, 25% x 75% (P1), 50% x 50% (P2) e 75% x 25% (P3) were respectively studied, being initially treated with a 2% aqueous solution of sodium hydroxide. Mechanical analyses indicated that with respect to studies of traction, for the combination of P1 and P3, better results of 22.17 MPa and 16.98 MPa, were obtained respectively, which are higher than that of the combination P2. The results of the same pattern were obtained for analysis of bending resistance where P1 is 1.21% and P3 represents 0.96%. In the case of resistance to bending, best results were obtained for the combination P1 at 49.07 MPa. However, when Young's modulus values were calculated, the values were different to the pattern of the results of other tests, where the combination P2 with the value of 4.06 GPa is greater than the other combinations. This shows that the PALF had a greater influence in relation to curauá fibre. The analysis of the results generally shows that in combinations of two vegetable fibers of cellulosic origin, the fiber which shows higher percentage (75%) is the best option than to the composition of 50%/50%. In the meantime, according to the results obtained in this study, in the case where the application should withstand bending loads, the better composition would be 50%/50%
Resumo:
This research presents an approach to the addition of curauá fibers and licuri fibers in a polypropylene resin matrix, such as an alternative proposal to reinforce the polymeric composites. Fiber content of 0 %, 5 %, 10 %, and 20% were analyzed for verification of their mechanical properties comparing them, inclusive with the properties of polypropylene. The grainulated biocomposites had been prepared in an extrusora. The test bodies had been molded by injection and submitted to the mechanical essays uniaxial traction, flexion on three points, impact, in addition to thermal tests (HDT). These biocomposites had been also subjected the essay physicist-chemistry index of fluidity (IF). It was observed that the biocomposites of PP with 20% curauá, obtained bigger increase in the modulus of elasticity and a bigger reduction in the resistance to the impact. In the mechanical behavior, for all the biocomposites, these were increases in values of the limit of drainage and tension of rupture, when tested by uniaxial traction, as they added the fibers. Another important point was the increase of the resistance the flexion. It was also noted that the addition of fibers reduced the thermal degradation of the mixture natural fibers / polypropylene.