17 resultados para Facundo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal set for this work was to synthesize and to characterize new iron and copper complexes with the Schiff base 3-MeOsalen and ligands of biological relevance, whose formulas are [Fe(3-MeOsalen)NO2], [Fe(3-MeOsalen)(etil2-dtc)], [Fe(3-MeOsalen)NO] and Na[Cu(3-MeOsalen)NO2]. The compounds were characterized by vibrational spectroscopy in the infrared region (IV) and Electronic spectroscopy in the ultraviolet and visible region (Uv-Vis). From the analysis of infrared spectra, they proved to formation of precursor complexes, as evidenced by changes in the vibrationals frequencies ν(C=N) e ν(C-O) and the emergence of vibrationals modes metal-oxygen and metal-nitrogen. For nitro complexes of iron and copper were observed ν(NO2)ass around 1300 cm-1 e ν(NO2)sim in 1271 cm-1 , indicating that the coordination is done via the nitrogen atom. The complex spectrum [Fe(3-MeOsalen)(etil2-dtc)] exhibited two bands, the ν(C-NR2) in 1508 cm-1 e ν(C-S) in 997 cm-1 , the relevant vibrational modes of coordinating ligand in the bidentate form. For the complex [Fe(3-MeOsalen)NO] was observed a new intense band in 1670 cm-1 related to the ν(NO). With the electronic spectra, the formation of complexes was evidenced by shifts of bands intraligands transitions and the emergence of new bands such as LMCT (p Cl-  d* Fe3+) in [Fe(3-MeOsalen)Cl] and the d-d in [Cu(3-MeOsalen)H2O]. As for the [Fe(3-MeOsalen)NO2] has highlighted the absence of LMCT band present in the precursor complex as for the [Cu(3-MeOsalen)NO2] found that the displacement of the band hipsocrômico d-d on 28 nm. The electronic spectrum of [Fe(3-MeOsalen)(etil2-dtc)] presented LMCT band shifts and changes in intraligantes transitions. With regard to [Fe(3-MeOsalen)NO], revealed a more energetic transitions intraligands regions from the strong character π receiver NO and MLCT band of transition dπFe(II)π*(NO).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The educational games can act as a complementary tool in the teaching and learning as play an important role in the interaction of the student with knowledge, and encourage interrelationship between students and motivate them by the pursuit of knowledge. This research is intended to analyze the evidence of the students of distance education applied to semesters 2011.2 and 2012.2 for the purpose of to catalog the mistakes presented by the students, the contents of stereochemistry that attended the Chemistry of Life discipline. From the presented mistekes, develop an educational game, "walking the stereochemistry", addressing that content. The choice of stereochemistry content was due to the low number of found work in the literature, and for being one of organic chemistry content that generates learning difficulties, as it requires a mental visualization and manipulation of molecular structures, besides require observation and comparison ability by the students. The game was applied of Life Chemistry discipline of Nova Cruz Polo in semester 2013.2, with intention to verify the viability and applicability this tool for the development of motivation ability by the pursuit of knowledge by the students, as well as complement the didactical materials of the DE. Then, It was made available on the course page an opinion questionnaire to the participants of the game, as a way of to investigate the opinion their about the proposed strategy. To diagnose the contributions of the game on student learning, it was taken a comparative analysis of stereochemistry issues contained in didactic tests applied in 2013.2 semester students participating and not participating of the polo of Nova Cruz and was also compared with the tests applied at the poles of Extremoz, Currais Novos, Lajes and Caico. So the game can be considered an important resource to complement the teaching materials of distance education, because awoke the motivation for the search of knowledge and contributes to the learning of stereochemistry content.